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ABSTRACT 
The Intrusion Detection System (IDS) is essential for network security, but its complex environment can 
result in high false detection rates due to the large number of normal samples. To tackle this issue, an 
Enhanced Generative Adversarial Network with Bidirectional Long Short-Term Memory and Cross-
correlated Convolutional Neural Network (EGAN-BiLSTM-CCNN) has been developed in MANET. This 
model was deployed in Cluster Heads (CHs) for IDS based on the local information of nodes but faces 
challenges in capturing global information. Integration issues across diverse clusters hinder its ability to 
detect coordinated attacks. This study introduces a novel Transfer Learning (TL) mechanism coupled with 
the EGAN-BiLSTM-CCNN model for IDS. The main objective of this model is to utilize both local and global 
information of the network based on the TL to enhance the performance of collaborative IDS. First, a 
cluster-based MANET simulation is established to simulate various attacks such as flooding, black holes, 
gray holes, and forging attacks. Then, network parameters related to these attacks are collected for each 
node within clusters and transmitted to respective CHs. CHs share local information to attain a global 
perspective. By leveraging local and global information, a common latent subspace for various attacks and 
an optimized representation are discovered based on the TL process, thus generating a training dataset. 
This dataset is used to train the EGAN-BiLSTM-CCNN model deployed within each CH for intrusion 
detection, achieving a balance between security and performance in MANETs.  
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1. INTRODUCTION 
MANETs enable mobile nodes to create networks without a fixed infrastructure or centralized control, 
adapting to specific requirements dynamically. Each node uses its wireless transmitter and receiver to 
communicate with others within its radio range. If a node requests to forward a packet beyond its radio 
range, it utilizes multi-hop communication, requiring each node to function as both a host and a router. 
The network's topology can change significantly as nodes enter, leave, or move within the network. 
MANETs are now utilized in various applications, including military, civilian, and commercial ones [1]. 
However, their increasing use has raised security concerns, as most routing protocols assume all nodes 
are friendly, leaving the network vulnerable to compromise [2]. MANETs are susceptible to both passive 
and active attacks, such as eavesdropping and packet injection [3]. Various proactive schemes, such as 
cryptography and authentication, have been implemented [4], but they are not always effective. An IDS 
can help detect attacks as they enter the network, preventing damage to the system or data [5]. 
IDS involve monitoring activities in a computer or network system, which collects and analyzes activity 
information to identify security violations. However, current intrusion detection techniques for wired 
networks are not suitable for wireless networks like MANETs [6].  
Therefore, modifications or new techniques are needed to make intrusion detection effective in 
MANETs.The use of Artificial Intelligence (AI) in IDS has led to a focus on AI-based detection methods in 
research [7-9]. Challenges in designing and implementing IDS include handling large-scale, high-
dimensional data, imbalanced data, and difficulty in extracting features from network traffic data [10]. To 
address these issues, a network intrusion detection algorithm [11] was developed using a combination of 
hybrid sampling and a deep hierarchical network. This approach established a balanced dataset, allowing 
the model to fully learn minority sample features and significantly reduce training time. Additionally, the 
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algorithm employed a Convolutional Neural Network (CNN) for spatial feature extraction and BiLSTM for 
temporal feature extraction, creating a deep hierarchical network model. However, the complexity of 
network traffic data makes it challenging to extract features. Inaccurate retrieval of features will result in 
low accuracy. As a result, a new model for network IDS was proposed. First, an EGAN was adopted [12] to 
increase the minority sample, creating a balanced dataset that allows the network to fully capture the 
characteristics of minority samples when significantly reducing the learning period. Next, an improved 
deep correlated hierarchical network was created utilizing the BiLSTM to capture temporal 
characteristics and the CCNN to capture spatial traits. The softmax was later utilized to categorize 
intrusion information. 
 
1.1 Problem description 
The implementation of EGAN-BiLSTM-CCNN in CHs of MANET clusters is beneficial for detecting and 
classifying collaborative network attacks locally. This is achieved by collecting node parameters, such as 
local context information within each cluster, during various types of attacks. However, a significant 
limitation is that the model's effectiveness in capturing global information across the entire MANET may 
be compromised. The hierarchical nature of the network implies that the CHs in different clusters act as 
intermediaries for information exchange. The BiLSTM-CCNN model might face challenges in seamlessly 
integrating global information from diverse clusters, impacting its ability to detect coordinated attacks 
that span multiple clusters. 
Additionally, the scalability of the proposed model across large and dynamic MANETs raises concerns. 
The model's performance may degrade when deployed in larger networks, and adapting to dynamic 
network conditions may pose challenges, potentially leading to increased false positives or negatives. 
Addressing these limitations will be instrumental in advancing the proposed IDS model's capability to 
effectively utilize both local and global information within MANET clusters, thereby improving its overall 
accuracy and adaptability in real-world network environments. 
 
1.2 Major contributions of the paper 
Hence, this manuscript develops the TL-EGAN-BiLSTM-CCNN model for IDS in MANETs. The key 
contributions include: 
 First, a cluster-based MANET is established to simulate various types of attacks, including flooding, 

black hole, gray hole, and forging attacks. 
 Next, network parameters related to the different attacks for each node within each cluster are 

gathered and transmitted to their respective CHs. The local information stored in each CH is then 
shared with every other CH to obtain a global perspective. 

 By leveraging both local and global information, the TL process is utilized to identify a common latent 
subspace for various attacks, as network attacks exhibit similar characteristics, and aids in developing 
an optimized representation that is invariant to changes in attack behaviors. As a result, a training 
dataset is generated. 

 The EGAN-BiLSTM-CCNN model within each CH is deployed using the obtained training dataset to 
detect and classify network intrusions. 

 By leveraging both local and global information of the network, a balance between security and 
performance in MANETs is achieved. This equilibrium ensures that security measures do not 
excessively compromise the network's performance, and vice versa. 

 Finally, extensive simulations demonstrate that the TL-EGAN-BiLSTM-CCNN yields superior network 
performance compared to existing IDSs. 
 

1.3 Outline of the paper 
The following manuscript is structured as follows: Section 2 covers the related works. Section 3 discusses 
the TL-EGAN-BiLSTM-CCNN. Section 4 presents the experimental outcomes. Section 5 concludes the 
study. 
 
1.4  Literature survey 
Several relevant works in the field of IDSs based on the AI approaches are listed below: 
In [13], a Double-Layered Hybrid Approach (DLHA) was presented for IDS using a hybrid naive Bayes and 
Support Vector Machine (SVM). First, general features of various attacks were extracted by Principal 
Component Analysis (PCA). Then, the naive Bayes was used to identify DoS and Probe attacks, while the 
SVM was used to separate R2L and U2R from regular cases. However, the accuracy was not effective for 
detecting unknown collaborative attacks.In [14], a tree-based stacking model was introduced for IDS that 
takes into account the ranking of features based on their scores and uses these features to build a stacking 
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model. However, the model primarily focused on intrusion detection as a binary classification problem, 
leading to low accuracy in classifying collaborative attacks. In [15], a hybrid deep learning framework 
was presented by combining CNN and LSTM for IDS. However, the detection accuracy was impacted by 
the data imbalance problem. 
In [16], a new IDS was introduced, which integrates Q-learning with a deep Feed-Forward Neural 
Network (FFNN) to detect network intrusions. However, the accuracy of the model was still very low. In 
[17], a Deep Learning-based Network IDS (DLNIDS) was developed that incorporates an attention 
strategy and BiLSTM. The system initially extracts sequence features of data traffic using CNN and 
reallocates the weights of all channels utilizing the attention strategy. The BiLSTM was then employed to 
learn these features for intrusion detection. To address data imbalance, Adaptive Synthetic Sampling 
(ADASYN) was used to increase the minority class samples, and an adapted stacked autoencoder was 
used for reducing data dimensions. But the accuracy was low and it was unable to detect collaborative 
attacks. 
In [18], a hybrid Recurrent Neural Network (RNN) and correlation-based feature optimization were 
introduced for IDS. Initially, data pre-processing was employed to remove data redundancy and select the 
most suitable feature set. Subsequently, the chosen features were classified by the hybrid RNN, including 
LSTM and Gated Recurrent Unit (GRU), to distinguish between benign activity and various network 
attacks. However, the recalland precision were ineffective in classifying collaborative attacks. 
In [19], a new and reliable ensemble machine-learning framework was developed for detecting network 
intrusions. This model includes a pre-processing based on the SMOTE, regularization, and tag encoding. 
XGBoost was then used to select the best features, which were then input into various classifiers for 
detecting network intrusions. On the other hand, the accuracy was low since it did not learn the 
relationship among different features. 
In [20], a Whale Optimization Algorithm (WOA)-based Deep Neural Network (DNN) was developed to 
optimize the dataset and categorize intrusions in MANET. But the accuracy was low because of 
inadequate features. In [21], an IDS was developed using the FFNN, Cascading Back Propagation Neural 
Network (CBPNN), and Convolutional Neural Network (CNN) for MANET to identify complex patterns and 
malicious nodes. On the other hand, the precision was ineffective due to the lack of global features. 
In [22], a new deep learning-based IDS was presented for IoT devices. A four-layer deep fully connected 
network structure was used to identify malicious traffic that could potentially launch attacks on 
connected IoT devices. However, the accuracy was less for detecting collaborative attacks sinceit includes 
only specific types of attacks. In [23], a hierarchical LSTM-based IDS was developed to effectively manage 
an entire packet and classify network intrusions. However, they found that the classification accuracy 
decreased as the volume of traffic to be processed increased. 
 
1.5 Research gap 
Despite advancements in IDS for MANETs, there is a research gap in incorporating both local and global 
information of MANET nodes for enhanced intrusion detection capabilities. Existing works focus on 
developing IDS models using deep learning techniques for MANETs to identify complex patterns and 
malicious nodes, but often lack comprehensive consideration of both local and global context information. 
Local information is crucial for identifying node-specific anomalies and attacks, while global information 
provides a broader context for detecting coordinated attacks and anomalies at the network level. The 
research community has not extensively explored IDS models that effectively integrate both local and 
global information, limiting the ability to detect sophisticated attacks involving collaboration among 
multiple nodes. Addressing this research gap is essential for developing more robust and adaptive IDS 
solutions capable of providing a holistic view of the MANET environment, improving detection accuracy 
and responsiveness to emerging threats in dynamic and resource-constrained network settings. 
 
2. METHODS 
This section explains the TL-EGAN-BiLSTM-CCNN. A detailed pipeline of this study is illustrated in Fig. 1. 
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Figure 1. Pipeline of the proposed study 

 

 
Figure 2. Threat model for MANET in this study 

 
2.1 Threat model 
The threat model for MANETs identifies the potential security risks and vulnerabilities that arise from the 
dynamic and self-organizing nature of these networks. This study examines four different types of 
network attacks, as shown in Fig. 2. 
1. Flooding attack: This is a malicious activity in which an adversary floods the network with an 

excessive volume of packets or requests. The main goal of this attack is to overwhelm the target 
network's resources, causing disruption and degradation of service. This study focuses on the Route 
Request (RREQ) flooding attack, in which an intruder node continuously floods the RREQs for non-
existent node IDs. Regular nodes unwittingly forward these RREQs in an attempt to discover a route to 
malicious nodes. 

2. Black hole attack: This is a malicious activity, in which a node selectively drops or absorbs data 
packets, creating a "black hole" in the network. In this type of attack, a compromised or malicious 
node falsely advertises itself as having the shortest route to the destination, luring traffic towards it. 
However, instead of forwarding the received packets, the malicious node intentionally drops them, 
leading to data loss and communication disruptions. Black hole attacks take advantage of the dynamic 
and decentralized nature of MANETs, where nodes work together to relay information without 
depending on a fixed infrastructure. 

3. Gray hole attack: This is a form of malicious activity in which a compromised node selectively drops or 
modifies certain data packets while allowing others to pass through. Unlike a black hole attack, where 
all packets are dropped, a gray hole attacker exhibits more sophisticated behavior by manipulating or 
dropping some packets while allowing others to pass through. This selective forwarding makes gray 
hole attacks more difficult to detect than straightforward packet dropping attacks. 

4. Forging (spoofing) attack: It is a type of cyberattack where an adversary attempts to deceive a system 
or network by using falsified information to gain unauthorized access or manipulate the system's 
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behavior. This study focuses on identity spoofing attacks, in which attackers forge the identity of a 
legitimate node to gain unauthorized access to the network. 

2.2 Gathering local and global information 
In MANETs, gathering information involves collecting data at the individual node level (local information) 
and aggregating relevant features at the cluster level (global information). Nodes within a cluster 
exchange information locally, and CHs exchange summarized data with neighboring CHs to maintain a 
balance between local and global perspectives. 
 Local information: Each node in the MANET collects and maintains local information related to its own 

state, behavior, and communication patterns. Local information  xi  for node i in any cluster can 
include features such as node ID, energy level, connectivity status, traffic load, and other relevant 
parameters (e.g., bandwidth, hop count, round trip time, amount of packets dropped, amount of 
packets received, and total number of packets in transmission). Nodes transmit this information to 
their corresponding CHs. 

 Global information: CHs aggregate local information from their member nodes to create a global view 
of the cluster. This aggregated data may include average energy levels, traffic patterns, or summaries 
of local intrusion detection results. CHs communicate with each other to exchange summarized global 
information, enabling a network-wide perspective and coordinated responses to network events. 

The IDS continually updates local and global information as network conditions change. This dynamic 
updating ensures that the IDS can adapt to evolving security threats and network dynamics. 
 
2.3 Transfer learning strategy for generating optimized representation 
This study models the IDS as a multi-label classification dilemma, which is to categorize all network data 
as normal and different types of attacks. Consider the local information examples Xl =  xi , where 
xi ∈ ℝ

m  represents the local features of nodes in the MANET, and LS =  yi  denotes the corresponding 
labels. 
Additionally, consider a global information Xg =  ui , where ui ∈ ℝ

n  are network-wide features in the 

MANET, and the associated labels are denoted by GS =  zi . The local and global information are learned 

from various distributions, P Xl ≠ P Xg , where P Xg  is indefinite and the sizes of xi  and ui  are varied 

 m ≠ n . The objective is precisely estimate the tags Z (attack types) on the global information Xg  based 

on the local information Xl  in the MANET for IDS. 
The TL strategy identifies common traits in network attacks and uses them to find a common latent 
subspace. It then maps local and global information to create new feature representations that can be 
used for classification. The model utilizes both local and global information from various attacks to 
explore a common latent space. This space preserves the original data structure while ensuring that 
discriminative examples remain far apart. 
 
2.3.1 Optimization 
For local information data Xl  and global information data Xg , the objective is to find the optimal subspaces 

Vl  and Vg . The optimization objective is given in Eq. (1): 

minVl ,Vg
f Vl , Xl + f Vg , Xg + βD Vl , Vg   (1) 

In Eq. (1), f Vl , Xl  denotes a bias function that estimates the variance between the actual local 

information and its projection onto Vl , f Vg , Xg  denotes a distortion function that evaluates the difference 

between the actual global information and its projection onto Vg , D Vl , Vg  is the difference between the 

projected data of the local and global information, and β is the tradeoff variable that regulates the 
similarity between both local and global information. So, the first two elements of Eq. (1) guarantee that 

the projected data preserve the actual data patterns as much as possible.The D Vl , Vg  is defined in terms 

of f ∗,∗  in Eq. (2): 

D Vl , Vg =  Vl − Vg 
2

    (2) 

A linear transformation is applied to find the projected space. The f ∗,∗  is defined by Eq. (3). 

f Vl , Xl =  Xl − VlPl 
2;  f Vg , Xg =  Xg − VgPg 

2
    (3) 

Here, Vl  and Vg  are attained by a linear conversions with linear mapping matrices, represented by 

Pl ∈ ℝ
k×m  and Pg ∈ ℝ

k×n  to the local and global information, correspondingly.  X 2  defines the Frobenius 

norm. Alternatively, P
l

Xg
∈ ℝm×k  and Pg

Xg
∈ ℝn×k  project the local information Xl  and Xg  into a k -

dimensional latent subspace, where the estimated information is analogous (i.e., f Vl , Xl =  XlPl

Xg
−

Vl 
2

). This results in a trivial solution Pl = 0, Vl = 0. Therefore, Eq. (3) is applied. It is observed as a 
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matrix factorization dilemma, commonly known as a powerful technique to capture latent subspaces 
when maintaining the actual data patterns. 
Substituting Eq. (3) and Eq. (2) into Eq. (1), the following objective Eq. (4) is obtained: 

min G Vl , Vg , Pl , Pg = min   Xl − VlPl 
2 +  Xg − VgPg 

2
+ β Vl − Vg 

2
     (4) 

A gradient approach is utilized to obtain the global minimum by iteratively setting 3 of the matrices and 
solving the residual until convergence. 
 
2.3.2 Clustering-based transfer learning 
It relies on the configuration of a hyperparameter, specifically the significance of the local and global 
information  β . Inappropriate selection of parameters could result in less effective outcomes. The rank of 

the class for Xl  and Xg  might impact the outcomes of D Vl , Vg . In reality, our knowledge of the new attack 

in Xg  may be limited, therefore the conversion procedure in (4) can be ambiguous. 

To solve this issue, the clustering-based TL is introduced that automatically determines the significance of 
the local and global information before applying the projection. Initially, the instances for the global 
information data, considering that the local information already exhibits five natural clusters (classes: 
normal, flooding attack, black hole attack, gray hole attack, and forging attack). The similarity of each 
cluster is computed, and a mapping is established for each cluster in the global information to the local 
information. Instances are sorted according to their cluster labels, ensuring that the rows in matrices 

representing the global  Xg  and local  Xl  information shared an identical class rank. Subsequently, 

objective (4) is solved for the ranked Xg  and Xl  information.  

Fig. 3 illustrates the clustering-based TL process, with the entire process detailed in Algorithm 1. K-means 
is selected for clustering and the Euclidean distance is utilized for similarity calculation. 
 
Algorithm 1: Clustering-based TL 

Input: Local  Xl  and global  Xg  information    

Output: Optimal latent subspace and representations 
1. Initializec clusters for Xl  and Xg , c = 5; 

2. CXg
= kmeans Xg , c ;   //CXg

: the cluster tag for all instances in Xg  

3. CXl
= YXl

;   //CXl
: the cluster tag for all instances in Xl , YXl

: the class tag for Xl  

4. 𝐢𝐟 the dimensions of Xg ≠ Xl  

5. Xg = pca Xg ;  Xl = pca Xl ; 

6. Calculate the Euclidean distance between centers of all clusters in Xg  and Xl ; 

7. 𝐟𝐨𝐫 each cluster in Xg  

8.  Select an analogous cluster from CXl
, which has the minimum Euclidean distance to create a 

comparable cluster pair, and allocate a similar tag to all comparable pairs of clusters; 
9. 𝐞𝐧𝐝 𝐟𝐨𝐫 

10. Sort the matrices  Xg , CXg
  and  Xl , CXl

  in the order of CXg
 and CXl

, to obtain the updated global and 

local information, respectively; 
11. 𝐞𝐧𝐝 𝐢𝐟 
12. Return the optimal latent subspace 
This algorithm has a time complexity of O N2  and a space complexity of O N , where N is the number of 
data instances in the given datasets. 
 
2.4 Training EGAN-BiLSTM-CNN model for IDS 
After creating the new training dataset with optimized representations, the EGAN-BiLSTM-CCNN model is 
implemented in each CH. The training dataset, which is derived from the optimized latent subspace using 
the clustering-based TL mechanism, is used as input for training the EGAN-BiLSTM-CCNN model.  
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Figure 3. Clustering-based TL process 

 
This model learns to differentiate between normal network behavior and various types of network 
attacks by utilizing the optimized latent representations. Once trained, the EGAN-BiLSTM-CCNN model 
can detect intrusions within each CH based on the learned features and patterns from training. CHs 
communicate and share relevant information, contributing to a collaborative IDS. Information exchange 
among CHs allows for a network-wide perspective and improves the detection of collaborative attacks 
across multiple clusters. 
Therefore, the IDS in MANETs strike a balance between security and network performance by detecting 
various network attacks using the EGAN-BiLSTM-CCNN model within each CH and leveraging the 
optimized latent space for training. 

 
3. RESULTS AND DISCUSSION 
This section assesses the efficiency of the TL-EGAN-BiLSTM-CCNN model and compares it with existing 
IDS models, including EGAN-BiLSTM-CCNN [12], CNN-LSTM [15], hybrid RNN [18], and CNN [21]. The 
threat models are simulated in Network Simulator (NS2.35) to create a dataset for Python, which 
supports the IDS. The simulations are carried out on a system with an Intel ® Core TM i5-4210 CPU @ 
2.80 GHz platform. Table 1 presents the parameters and their values utilized for simulating both existing 
and proposed IDS models to measure performance. 
Nodes are randomly selected to send and receive data. The path for data transmission is determined 
based on the minimum distance between nodes. After forming the network and calculating the clusters, 
CHs, and nodes trust each other. The value function of CHs and members is then calculated.  
Malicious nodes are also placed within the clusters. To simulate a flooding attack, malicious nodes 
transmit forged RREQ packets every 100ms, attacking multiple paths within the network layer. A 
selective packet-dropping attack is also simulated, in which malicious nodes drop every RERR packet, 
causing authentic nodes to transfer packets over failed paths. Feature vectors are selected after 
simulating these attacks, which will be used in classification to signify system activity and differentiate 
between typical and atypical activities. Training datasets for all sampling periods (5, 10, 15, 30 s) are 
generated by running simulations with UDP, nodes speed of 10m/s, and different quantities of malevolent 
nodes (5, 15, 25) for different network mobility. The sender and receiver nodes are chosen randomly and 
the path between them is calculated. 
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Table 1. Simulation parameters 
Parameters Value 
Simulation tool NS2.35 
Simulation region 1000×1000 m2 
No. of nodes 200 
Attack types RREQ flooding, black hole, gray hole, and identity spoofing 
Transmission range 1000 m 
Routing protocol Adhoc On-demand Distance Vector (AODV) 
Traffic model Constant Bit Rate (CBR) 
Mobility type Random waypoint 
Antenna type Omni directional 
Channel type Wireless 
Transport layer protocol UDP 
Node speed 10 m/s 
Simulation time 100 sec 

 
The derived datasets include both local and global information like bandwidth, remaining energy, traffic, 
hop count, round trip time, amount of packets dropped, amount of packets received, and total number of 
packets in communication. These parameters are collected from each simulation and grouped into a 
training dataset for each sampler intermission. The same procedure is followed for creating test datasets. 
These datasets are then used in the TL-EGAN-BiLSTM-CCNN and other IDS models to find malicious 
nodes in the network. 
 
3.1 Performance evaluation measures 
1. Accuracy: It is the ratio of correctly recognized instances to the entire dataset, and calculated by Eq. (5). 

Accuracy =
True  Positive   TP  +True  Negative  (TN )

TP +TN +False  Positive   FP +False  Negative (FN )
  (5) 

In Eq. (5), TP measures the total attack instances properly categorized as an intrusion, TN refers to the 
total normal instances correctly categorized as normal, FP measures the total normal instances 
improperly categorized as an intrusion, and FN measures the total attack instances incorrectly 
categorized as normal. 
2. Precision: It is calculated by Eq. (6). 

Precision =
TP

TP +FP
    (6) 

3. Recall: It is calculated by Eq. (7). 

Recall =
TP

TP +FN
     (7) 

4. F-score: It is computed by Eq. (8). 

F − score =
2×Precision ×Recall

Precision +Recall
   (8) 

Fig. 4 presents a comparison of different IDS models during training. It can be observed that the accuracy 
of TL-EGAN-BiLSTM-CCNN is significantly higher than the CNN, CNN-LSTM, hybrid RNN, and EGAN-
BiLSTM-CCNN, with increases of 15.2%, 10.8%, 6.4%, and 2.7% respectively. Similarly, the precision, 
recall, and f-score of TL-EGAN-BiLSTM-CCNN are also notably higher compared to the other models. This 
performance improvement is attributed to the model's ability to consider both local and global 
information of network properties for detecting various types of intrusions in MANETs. TL-EGAN-
BiLSTM-CCNN appears to leverage these combined features more effectively than other models. 
Fig. 5 illustrates a comparison of different IDS models during testing. The accuracy of TL-EGAN-BiLSTM-
CCNN has improved by 13.4%, 10.4%, 6.1%, and 2.7% compared to the CNN, CNN-LSTM, hybrid RNN, and 
EGAN-BiLSTM-CCNN, respectively. The precision has also increased by 13.8%, 11.3%, 5.8%, and 2.7% 
compared to the CNN, CNN-LSTM, hybrid RNN, and EGAN-BiLSTM-CCNN, respectively. Additionally, the 
recall is 13.4%, 10.9%, 6%, and 2.7% higher than the CNN, CNN-LSTM, hybrid RNN, and EGAN-BiLSTM-
CCNN, respectively. Furthermore, the f-score has increased by 13.6%, 11.1%, 5.9%, and 2.7% compared 
to the CNN, CNN-LSTM, hybrid RNN, and EGAN-BiLSTM-CCNN, respectively. These improvements are 
achieved by considering both local and global information on network properties for detecting various 
types of intrusions in MANETs. 
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Figure 4. Performance of different IDS models during training 

 

 
Figure 5. Performance of different IDS models during testing 

 
4. CONCLUSION 
This study introduces the TL-EGAN-BiLSTM-CCNN model, which combines local and global information 
on network parameters to address various threats and provide a robust solution for collaborative IDS. 
The improved performance and security demonstrated in the study highlight the potential of this 
approach for real-world applications in dynamic and challenging network environments. The model's 
capability to handle diverse threats, such as flooding, black holes, gray holes, and forging attacks, is 
showcased, and extensive simulations validate its effectiveness. The results indicate that the TL-EGAN-
BiLSTM-CCNN model reached an accuracy of 92.7% and 90.5% for training and testing, respectively, 
outperforming existing IDS models. Overall, the proposed model has the potential to enhance the security 
posture of MANETs in dynamic and challenging environments. 
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