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1 Introduction

The investigation of stability analysis of nonlinear uncertain systems is an important
topic in systems theory. The problem of stability analysis of nonlinear time-varying
systems has attracted the attention of several researchers and has produced a vast
body of important results (see [2]-[26], [29], [32], [33], [34] and the references therein).
There have been a number of interesting developments in searching the stability cri-
teria for nonlinear differential systems, but most have been restricted to finding the
asymptotic stability conditions for some classes of certain systems. In particular,
parametric stability for nonlinear systems is an interesting area of research, and it
naturally arises in diverse fields such as population biology, economics, neural net-
works, and chemical processes.
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Basically, parametric stability for nonlinear systems addresses the stability of equilib-
ria for nonlinear systems with real parametric uncertainty, especially the feasibility
of equilibria and the stability nature of the equilibria with respect to small variations
of the real parametric uncertainty (see [25]). Dynamic systems governed by ordinary
differential equations with periodically varying coefficients have been studied since
one and a half centuries ago (see [12], [14], [19] and the references therein).
Mathieu [31] introduced a differential equation with periodic coefficient and Hill [24]
presented the first ever solution technique of linear periodic equations. Lyapunov [30]
demonstrated the Lyapunov-Floquet transformation for autonomous systems which
is a linear periodic system into a dynamically equivalent time-invariant form. Unlike
the differential systems without parameters, studying stability of differential para-
metric systems with periodic coefficients may not be easily verified ([16]-[17]).
It is well known that for linear parametric systems of the form: ẋ = A(α)x, α is a
real parameter which can be constant or depending on time. For technical reasons, it
is important to distinguish between constant and time-varying parameters. Constant
parameters have a fixed value that is known only approximately. In this case, the
underlying dynamical linear system is time invariant. Time-varying parameter α(t)
is a certain function which varies in some range and the resulting system is then
time-varying. Kharitonov’s theorem (see [27]) gives a simple necessary and sufficient
condition for parametric system where a quadratic Lyapunov function is used to solve
the problem of stability. Barmish in [3] introduced the notion of parameter dependent
Lyapunov functions for continuous-time linear systems whose dynamic matrices are
affected by bounded uncertain time-varying parameters. Floquet [20] developed the
complete study for stability of linear time-periodic differential equations. Based on
Floquet theory the stability of the linear system with time-periodic coefficients can
be determined from the eigenvalues of a certain matrix. These eigenvalues are often
called Floquet multipliers. He proved that, if all Floquet multipliers have magnitude
less than one, the linear system with time-periodic coefficient is asymptotically stable.
In general to solve the problem of stability the usual techniques are related to some
linear matrices inequalities that finding an adequate Lyapunov matrix to solve a sys-
tem of Lyapunov inequalities which is a convex program. Perturbation theory is a
pertinent discipline for the applications of time parametric dynamics which is a com-
pilation of methods systematically used to evaluate the global behavior of solutions
to differential equations. This motivates us to study the problem of uniform exponen-
tial stability of perturbed systems by assuming that the nominal associated system
is globally uniformly asymptotically stable by imposing some restrictions on the size
of perturbations in particular that are periodic in time.
The goal is to obtain estimates for the solutions of perturbed differential equations
and to get uniform boundedness and uniform convergence to a small neighborhood of
the origin. The notion of practical stability, (see [6]), is introduced in a special case.
We determine values of parameters under which the systems are uniformly practically
exponentially stable where some estimates on the decay rate of solutions at infinity
are obtained. Finally, we give an application for the stabilization a class of control
parametric system.
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2 General definitions

Consider the non-autonomous system

dx

dt
= f(t, x) (1)

where f : [0,∞)×Rn −→ Rn is continuous in t and locally Lipschitz in x on [0,∞)×
Rn. The origin is an equilibrium point for (1), if f(t, 0) = 0, ∀t ≥ 0.

Definition 1. (Exponential stability) The zero solution of system (1) is exponen-
tially stable if there exist positive constants c, µ, and λ such that

∥x(t)∥ ≤ µ∥x(t0)∥e−λ(t−t0), ∀ ∥x(t0)∥ < c (2)

and globally exponentially stable if (2) is satisfied for any initial state x(t0) ∈ Rn.

The exponential stability is more important than stability, also the desired system
may be unstable and yet the system may oscillate sufficiently near this state that
its performance is acceptable, in particular when f(t, 0) ̸= 0, thus the notion of
practical stability is more suitable in several situations than Lyapunov stability, it
means that the trajectories converge to a small neighborhood of the origin, in the
sense of uniform stability and uniform attractivity of system (1) with respect a certain
ball Br = {x ∈ Rn/∥x∥ ≤ r}.

Definition 2. (Uniform stability of Br) Br is uniformly stable if for all ε > r,
there exists δ = δ(ε) > 0, such that

∥x(t0)∥ < δ =⇒ ∥x(t)∥ < ε, ∀t ≥ t0. (3)

Definition 3. (Uniform attractivity of Br) Br is uniformly attractive, if for
ε > r, t0 > 0 and x(t0) ∈ D, there exists T (ε, x(t0)) > 0, such that

∥x(t)∥ < ε, ∀t ≥ t0 + T (ε, x(t0)). (4)

Br is globally uniformly attractive if (4) is satisfied for all x(t0) ∈ Rn.

Definition 4. (Practical stability) System (1) is said uniformly practically asymp-
totically stable, if there exists Br ⊂ Rn, such that Br is uniformly stable and uniformly
attractive. It is globally uniformly practically asymptotically stable if x(t0) ∈ Rn.

Definition 5. System (1) is said uniformly exponentially convergent to Br, if there
exist γ > 0 and k ≥ 0, such that

∥x(t)∥ ≤ k∥x(t0)∥ exp(−γ(t− t0)) + r, ∀t ≥ t0, ∀x(t0) ∈ Rn. (5)

If x(t0) ∈ Rn, the system is globally uniformly exponentially convergent to Br.
We say that the system is globally uniformly practically exponentially stable if for
r > 0, it is globally uniformly exponentially convergent to Br.

Here, we study the asymptotic behavior of a small ball centered at the origin for
0 ≤∥ x(t) ∥ −r, so that if r = 0 we find the classical definition of the uniform
asymptotic or exponential stability of the origin viewed as an equilibrium point.
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3 Problem formulation

We consider the following system of differential equations

dx

dt
= µ(A(α(t)) +B(t))x+ νφ(t, x), t ≥ 0, (6)

where A(α(t)) ∈ Rn×n is a matrix given by A(α(t)) = α1(t)A1+α2(t)A2, with α1(t)+
α2(t) = 1, αi(t) ∈ R+, ∀t ≥ 0, B(t) ∈ Rn×n is T-periodic matrix, µ, ν ∈ R are
parameters and φ(t, x) is a smooth vector function such that, for all t ≥ 0 and
x ∈ Rn

φ(t+ T, x) = φ(t, x)

and

∥φ(t, x)∥ ≤ k∥x∥1+δ + r, δ ≥ 0, k > 0, r > 0. (7)

Suppose that the spectrum of matrices A1 and A2 belong to the left half-plane
{λ ∈ C,R(λ) < 0} and ∫ T

0

B(t)d(t) = 0. (8)

Throughout this paper, we indicate the following domains:

I1 = {µ ∈ R, 0 < µ < µ0}, I2 = {ν ∈ R, |ν| < ν0},

such that the system (6) is practically uniformly exponentially stable for µ ∈ I1, ν ∈
I2. Moreover, we obtain estimates on the solutions of (6) that guarantee exponential
decay when t −→ +∞ to a certain ball B(0, ri) with a radius ri, i = 1, 2.

Remark For µ = ν = 1, the system (6) can be seen as a perturbed system (see [8],
[9]).

Notations: The following notations will be used throughout this paper. For a matrix
X, the notation X∗ denotes the transpose of matrix X. λmin(X) and λmax(X) denote
the minimum and the maximum eigenvalues of X respectively.

Since

spect(Ai)i=1,2 ⊂ {λ ∈ C, Re(λ) < 0},

then, there exist symmetric and positive definite matrices H1 and H2 solutions of
the matrices Lyapunov equations (see [26] for the existence and uniqueness of the
matrices Hi, i = 1, 2),

H1A1 + A∗
1H1 = −I (9)

and

H2A2 + A∗
2H2 = −I. (10)

The matrices Hi, i = 1, 2 satisfy:

Hi =

∫ ∞

0

esA
∗
i esAids.
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In many cases, it is hard to find a common positive-definite matrix H = H1 = H2.
In fact, the existence of a common positive-definite matrix depends on the difference
of the two matrices Ai, i = 1, 2. In order to solve these problems, many scholars have
made many further investigations. For example, in [28], the authors showed that, if
the matrices A1 and A2 are real Hurwitz matrices, and that their difference is rank
one, then A1 and A2 have a common quadratic Lyapunov function if and only if the
product A1A2 has no real negative eigenvalue. We can solve this problem, in the
special case when A1 + A∗

1 = A2 + A∗
2, we get

H =

∫ ∞

0

esA
∗
1esA1ds =

∫ ∞

0

esA
∗
2esA2ds.

To facilitate our task, we will suppose that, (9) and (10) have a unique solution
H = H∗ > 0.
We have

γ1∥x∥2 ≤ ⟨Hx, x⟩ ≤ ∥H∥∥x∥2,
where γ1 = λmin(H).

Now, In order to study the asymptotic behavior of solutions, we shall impose some
conditions on the parameters under which the system (6) can be practically uniformly
exponentially stable.

Theorem 1. Let

β1 = max
τ∈[t0,t0+T ]

∥H
∫ τ

t0

B(s)ds+

∫ τ

t0

B∗(s)dsH∥,

β2 = max
τ∈[t0,t0+T ]

∥(H
∫ τ

t0

B(s)ds+

∫ τ

t0

B∗(s)dsH)(A1 +B(τ))∥,

β3 = max
τ∈[t0,t0+T ]

∥(H
∫ τ

t0

B(s)ds+

∫ τ

t0

B∗(s)dsH)(A2 +B(τ))∥,

and

µ0 = min{γ1
β1

,
1

2β
} where β = max{β2, β3}.

Let H be a solution to the matrices Lyapunov equations (9) and (10) and δ = 0.
Then, for parameters µ and ν such that

0 < µ < µ0 and 2µβ + 2|ν| k
(
∥H∥
µ

+ β1

)
< 1,

and for any initial data x(t0) ∈ Rn, the solutions of system (6) converge exponentially
towards the ball B(0, r1) whose radius is given by

r1 = 2|ν|r
(∥H∥

µ
+ β1)

2

(γ1
µ
− β1)

(
1− 2µβ − 2|ν|k(∥H∥

µ
+ β1)

) .
5
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Remark Note that, if ν = ν(t) with |ν(t)| −→ 0 as t −→ +∞, then the solution of
system (6) tend to zero when t tends to infinity.

Proof Define the following matrix

H(t, µ) =
1

µ
H −H

∫ t

t0

B(s)ds−
∫ t

t0

B∗(s)ds H. (11)

Since H = H∗, it follows that

H(t, µ) = H∗(t, µ)

and by (8), the matrix H(t, µ) is T-periodic, i.e.

H(t+ T, µ) = H(t, µ).

Let x(t) be a solution to (6), then the function

h(t, µ, ν) = ⟨H(t, µ)x(t), x(t)⟩

is continuously differentiable on t. It follows that, the derivative of h(t, µ, ν) is given
by

d

dt
h(t, µ, ν) = ⟨ d

dt
H(t, µ)x(t), x(t)⟩+ ⟨H(t, µ)

d

dt
x(t), x(t)⟩+ ⟨H(t, µ)x(t),

d

dt
x(t)⟩.

Since
d

dt
H(t, µ) = −HB(t)−B∗(t)H,

then

d

dt
h(t, µ, ν) = −⟨(HB(t) +B∗(t)H)x(t), x(t)⟩

+⟨µH(t, µ)(A(α(t)) +B(t))x(t), x(t)⟩
+⟨µ(A(α(t))∗ +B∗(t))H(t, µ)x(t), x(t)⟩
+ν⟨H(t, µ)φ(t, x), x(t)⟩+ ν⟨H(t, µ)x(t), φ(t, x)⟩.

Using the definition of matrix H(t, µ), we obtain

d

dt
h(t, µ, ν) = ⟨(−HB(t)−B∗(t)H)x(t), x(t)⟩+ ⟨H(A(α(t)) + B(t))x(t), x(t)⟩

−µ⟨(H
∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)(A(α(t)) +B(t))x(t), x(t)⟩

+⟨(A(α(t))∗ +B∗(t))Hx(t), x(t)⟩

−µ⟨(A(α(t))∗ +B∗(t))(H

∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)x(t), x(t)⟩

+2 (ν⟨H(t, µ)φ(t, x), x(t)⟩) .
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Replacing A(α(t)) by its value and multiplying B(t) by (α1(t) + α2(t)), we get

d

dt
h(t, µ, ν) = ⟨α1(t)(HA1 + A∗

1H) + α2(t)(HA2 + A∗
2H)x(t), x(t)⟩

−α1(t)µ

(
⟨(H

∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)(A1 +B(t))x(t), x(t)⟩

+ ⟨(A1 +B(t))∗(H

∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)x(t), x(t)⟩
)

−α2(t)µ

(
⟨(H

∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)(A2 +B(t))x(t), x(t)⟩

+ ⟨(A2 +B(t))∗(H

∫ t

t0

B(s)ds+

∫ t

t0

B∗(s)ds H)x(t), x(t)⟩
)

+2 (ν⟨H(t, µ)φ(t, x), x(t)⟩) .

(12)

Taking into account (9) and (10) and using the fact that 0 < µ < µ0, we obtain the
following estimate

d

dt
h(t, µ, ν) ≤ −∥x(t)∥2

+2µα1(t) max
τ∈[t0,t0+T ]

∥(H
∫ τ

t0

B(s)ds+

∫ τ

t0

B∗(s)dsH)(A1 +B(τ))∥∥x(t)∥2

+2µα2(t) max
τ∈[t0,t0+T ]

∥(H
∫ τ

t0

B(s)ds+

∫ τ

t0

B∗(s)dsH)(A2 +B(τ))∥∥x(t)∥2

+2|ν|k
(
∥H∥
µ

+ β1

)
∥x(t)∥2 + 2|ν|r

(
∥H∥
µ

+ β1

)
∥x(t)∥

≤ −
(
1− 2µβ − 2|ν| k

(
∥H∥
µ

+ β1

))
∥x(t)∥2

+2|ν|r
(
∥H∥
µ

+ β1

)
∥x(t)∥.

Since the matrix H(t, µ) is positive definite for 0 < µ < µ0, it follows that

0 < (
1

µ
γ1 − β1)I ≤ H(t, µ) ≤ (

1

µ
∥H∥+ β1)I.

Thus,

d

dt
h(t, µ, ν) ≤ −

1− 2µβ − 2|ν| k
(

∥H∥
µ

+ β1

)
1
µ
∥H∥+ β1

h(t, µ, ν)

+ 2|ν|r
(∥H∥

µ
+ β1)√

γ1
µ
− β1

√
h(t, µ, ν).
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Let H(t, µ, ν) =
√

h(t, µ, ν), it follows that,

d

dt
H(t, µ, ν) ≤ −

1− 2µβ − 2|ν| k
(

∥H∥
µ

+ β1

)
2(∥H∥

µ
+ β1)

H(t, µ, ν)

+ |ν|r
∥H∥
µ

+ β1√
γ1
µ
− β1

which implies that

H(t, µ, ν) ≤ H(t0, µ, ν) exp

−
1− 2µβ − 2|ν| k

(
∥H∥
µ

+ β1

)
2(∥H∥+ µβ1)

µ(t− t0)


+2|ν|r

(∥H∥
µ

+ β1)
2√

γ1
µ
− β1

(
1− 2µβ − 2|ν|k(∥H∥

µ
+ β1)

)
≤

√
∥H∥
µ

∥x(t0)∥ exp

−
1− 2µβ − 2|ν| k

(
∥H∥
µ

+ β1

)
2(∥H∥+ µβ1)

µ(t− t0)


+2|ν|r

(∥H∥
µ

+ β1)
2√

γ1
µ
− β1

(
1− 2µβ − 2|ν|k(∥H∥

µ
+ β1)

)
and consequently

∥x(t)∥ ≤

√
∥H∥

γ1 − µβ1

exp

−
1− 2µβ − 2|ν| k

(
∥H∥
µ

+ β1

)
2(∥H∥+ µβ1)

µ(t− t0)

 ∥x(t0)∥

+ 2|ν|r
(∥H∥

µ
+ β1)

2

(γ1
µ
− β1)

(
1− 2µβ − 2|ν|k(∥H∥

µ
+ β1)

) .
Thus, we obtain an estimation as in Definition 5. Hence, the solutions of system (6)
converge exponentially towards the ball B(0, r1) whose radius is given by

r1 = 2|ν|r
(∥H∥

µ
+ β1)

2

(γ1
µ
− β1)

(
1− 2µβ − 2|ν|k(∥H∥

µ
+ β1)

) .
Remark A simple verification shows that r1 > 0.

In the next part of this paper, a new class of functions appears: functions that
depend on a set of constant parameters, that is, f = f(t, x, ε), where ε ∈ Rp. The
constant parameters could represent physical parameters of the system and the study
of perturbation of these parameters accounts for modeling errors or changes in the
parameter values due to aging. Let begin by introducing the following lemma.
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Lemma (see [26]) Let f(t, x, ε) be continuous in (t, x, ε) and locally Lipschitz in x
(uniformly in t and ε) on [t0,+∞[×Rn × {∥ε− ε0∥ ≤ c}. Let y(t, ε0) be a solution of
ẋ = f(t, x, ε0) with y(t0, ε0) = y0 ∈ Rn. Suppose y(t, ε0) is defined and belongs to Rn

for all t ≥ t0. Then, given λ > 0, there is γ > 0 such that, if

∥z0 − y0∥ < γ and ∥ε− ε0∥ < γ

then there is a unique solution z(t, ε) of ẋ = f(t, x, ε) defined for t ≥ t0, with z(t0, ε) =
z0, and z(t, ε) satisfies

∥z(t, ε)− y(t, ε0)∥ < λ, ∀t ≥ t0.

Quite often when we study the state equation ẋ = f(t, x, ε), where ε ∈ Rp, we need
to compute bounds on the solution x(t) without computing the solution itself. That
is why, in order to make our tache more easy, we will solve the differential equation
ẋ = f(t, x, ε0) where ε0 is a parameter sufficiently close to ε, i.e., ∥ε− ε0∥ sufficiently
small and after that we will approximate the solution of ẋ = f(t, x, ε).

Theorem 2. Let H be a solution to the matrices Lyapunov equations (9) and (10).
Let β1, β2, β3, β and µ0 be defined in the Theorem 1, let δ > 0, ρ > 0 and

ν0 =
µ1−δ/2 (γ1 − µβ1)

1+δ/2 (1− 2µβ)

2 k(∥H∥+ µβ1)2 (
√

∥H∥
µ
ρ+ γ)δ

with γ is some constant. Then, for 0 < µ < µ0, |ν| < ν0 and for any initial data

x(t0) ∈ Rn, ∥x(t0)∥ ≤ ρ,

the system (6) is practically uniformly exponentially stable.

Proof Let x(t) be a solution to system (6) and H(t, µ) be defined by (11). From
the proof of Theorem 1, the function h(t, µ, ν) satisfy the inequality (12). By the
definition of matrix H(t, µ) and taking into account that ∥φ(t, x)∥ ≤ k∥x∥1+δ + r, we
obtain the following estimate

d

dt
h(t, µ, ν) ≤ −(1− 2µβ)∥x(t)∥2 + 2|ν|k

(
∥H∥
µ

+ β1

)
∥x(t)∥2+δ

+2|ν|r
(
∥H∥
µ

+ β1

)
∥x(t)∥.

Since

∥x(t)∥2 ≤ h(t, µ, ν)

( 1
µ
γ1 − β1)

and ∥x(t)∥δ ≤ h(t, µ, ν)δ/2

( 1
µ
γ1 − β1)δ/2

,

then,

∥x(t)∥2+δ ≤ h(t, µ, ν)1+δ/2

( 1
µ
γ1 − β1)1+δ/2

.
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It follows that

d

dt
h(t, µ, ν) ≤ − 1− 2µβ

1
µ
∥H∥+ β1

h(t, µ, ν)

+
2|ν|k

(
1
µ
∥H∥+ β1

)
( 1
µ
γ1 − β1)1+δ/2

h(t, µ, ν)1+δ/2

+2|ν|r

(
∥H∥
µ

+ β1

)
√

1
µ
γ1 − β1

√
h(t, µ, ν).

Introduce the following notation

ϵ1 =
1− 2µβ

1
µ
∥H∥+ β1

, ϵ2 =
2|ν|k

(
1
µ
∥H∥+ β1

)
( 1
µ
γ1 − β1)1+δ/2

and ϵ3 = 2|ν|r

(
∥H∥
µ

+ β1

)
√

1
µ
γ1 − β1

,

hence
d

dt
h(t, µ, ν) ≤ −ϵ1h(t, µ, ν) + ϵ2h(t, µ, ν)

1+δ/2 + ϵ3
√

h(t, µ, ν).

Let
z(t) =

√
h(t, µ, ν),

we have
d

dt
z(t) ≤ −ϵ1

2
z(t) +

ϵ2
2
z(t)1+δ +

ϵ3
2
. (13)

Let z(t, ε) the solution of (13) where ε = (ϵ1, ϵ2, ϵ3) ∈ R3
+ and y1(t, ε0) the solution of

d

dt
z(t) ≤ −ϵ1

2
z(t) +

ϵ2
2
z(t)1+δ (14)

where ε0 = (ϵ1, ϵ2, 0) ∈ R3
+.

In order to solve (14), we can take η = 1 + δ and w(t) = y1(t, ε0)
1−η = y1(t, ε0)

−δ.
Thus,

d

dt
w(t) =

ϵ1δ

2
w − ϵ2δ

2
.

Solving the homogenous equation

d

dt
w(t) =

ϵ1δ

2
w,

we get

w(t) = L e

ϵ1δ

2
t
.

Now, suppose that L is a function that depends on t, i.e. we have

w(t) = L(t) e

ϵ1δ

2
t
.
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A simple computation shows that

L(t) =
ϵ2
ϵ1

e
−ϵ1δ

2
t
+ θ, ∀θ ≥ 0,

and consequently

w(t) =
ϵ2
ϵ1

+ θe

ϵ1δ

2
t

where

θ =

(
w(t0)−

ϵ2
ϵ1

)
e
−ϵ1δ

2
t0
.

It follows that,

w(t) =
ϵ2
ϵ1

+

(
w(t0)−

ϵ2
ϵ1

)
e

ϵ1δ

2
(t− t0)

.

Since y1(t, ε0) = w(t)−1/δ and w(t0) = y1(t0, ε0)
−δ, we obtain

y1(t, ε0) =

y1(t0, ε0)
−δ e

ϵ1δ

2
(t− t0)

+
ϵ2
ϵ1

− ϵ2
ϵ1

e

ϵ1δ

2
(t− t0)

−1/δ

.

If
ϵ2y

δ
1(t0, ε0) < ϵ1, (15)

which will be verified later on, and using the fact that for all a ≥ 0 and b ≥ 0, we
have

(a+ b)p ≤ ap(1 +
b

a
)p, ∀p ∈ R,

Thus,

y1(t, ε0) ≤ y1(t0, ε0)e
− ϵ1

2
(t−t0) ×

(
1− yδ1(t0, ε0)

ϵ2
ϵ1

+ yδ1(t0, ε0)
ϵ2
ϵ1
e−

ϵ1
2
δ(t−t0)

)−1/δ

yields,

y1(t, ε0) ≤ y1(t0, ε0)e
− ϵ1

2
(t−t0)

(
1− yδ1(t0, ε0)

ϵ2
ϵ1

)−1/δ

.

Then, by the Lemma, for ∥ϵ3∥2 < γ and λ > 0, we get

∥z(t, ε)− y1(t, ε0)∥ < λ,

which implies that

∥z(t, ε)∥ < λ+

∥∥∥∥∥y1(t0, ε0)e− ϵ1
2
(t−t0)

(
1− yδ1(t0, ε0)

ϵ2
ϵ1

)−1/δ
∥∥∥∥∥

< λ+ (∥z(t0, ε)∥+ γ)e−
ϵ1
2
(t−t0)

∥∥∥∥1− yδ1(t0, ε0)
ϵ2
ϵ1

∥∥∥∥−1/δ

< λ+ (

√
∥H∥
µ

∥x(t0)∥+ γ)e−
ϵ1
2
(t−t0)

∥∥∥∥1− yδ1(t0, ε0)
ϵ2
ϵ1

∥∥∥∥−1/δ

.
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Since √
γ1
µ

− β1∥x(t)∥ ≤ z(t, ε) ≤

√
∥H∥
µ

+ β1∥x(t)∥,

then,

∥x(t)∥ ≤

√
∥H∥

γ1 − µβ1

∥∥∥∥1− yδ1(t0, ε0)
ϵ2
ϵ1

∥∥∥∥−1/δ

∥x(t0)∥e−
ϵ1
2
(t−t0)

+
λ√

γ1
µ
− β1

+
γ√

γ1
µ
− β1

∥∥∥∥1− yδ1(t0, ε0)
ϵ2
ϵ1

∥∥∥∥−1/δ

.

The last inequality implies that the solutions of system (6) converge exponentially
toward the ball B(0, r2) whose radius is given by

r2 =
λ√

γ1
µ
− β1

+
γ√

γ1
µ
− β1

∥∥∥∥1− yδ1(t0, ε0)
ϵ2
ϵ1

∥∥∥∥−1/δ

which is clearly positive.

Finally, let verify the condition (15). Since |ν| < ν0, 0 < µ < µ0 and ∥x(t0)∥ ≤ ρ,
then

ϵ2
ϵ1
yδ1(t0, ε0) ≤

2|ν|k
(

∥H∥
µ

+ β1

)2
( 1
µ
γ1 − β1)1+δ/2 (1− 2µβ)

(∥z(t0, ε)∥+ γ))δ

≤ 2ν0k

µ1−δ/2

(∥H∥+ µβ1)
2

(γ1 − µβ1)1+δ/2 (1− 2µβ)

(√
∥H∥
µ

ρ+ γ

)δ

.

Hence, according to the definition of ν0, we have

ϵ2
ϵ1
yδ1(t0, ε0) < 1.

4 Application to control

In this section we study the stabilization problem of a control system modeled by the
same dynamic as (6).

Definition 6. A function α : [0, a[→ [0,+∞[ is said to be of class K, if it is contin-
uous, strictly increasing and α(0) = 0. It is of class K∞ if, in addition, a = +∞ and
α(r) → +∞ as r → +∞.

Let as recall the following result (see [6]).
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Theorem 3. Let consider system (1) and suppose that there exist a continuously
differentiable real function h(·, ·) on R+×Rn, K∞ functions α1(·), α2(·), a K function
α3(·) and a small positive real number ϱ such that the following inequalities hold for
all t ∈ R+ and x ∈ Rn

α1(∥x∥) ≤ h(t, x) ≤ α2(∥x∥)
∂h

∂t
+

∂h

∂x
f(t, x) ≤ −α3(∥x∥) + ϱ.

Then the system is globally uniformly practically stable with r = α−1
1 ◦ α2 ◦ α−1

3 (ϱ).

When the function satisfying f(t, 0) ̸= 0 for certain t ∈ R+, we shall study the
asymptotic stability of the system at a neighborhood of the origin viewed as a small
ball centered at the origin. The state approaches the origin (or some sufficiently small
neighborhood of it) in a sufficiently fast manner. The following result gives sufficient
conditions for practical global exponential stability.

Theorem 4. Consider system (1). Let h : [0,+∞[×Rn → R be a continuously dif-
ferentiable Lyapunov function such that

c1∥x∥2 ≤ h(t, x) ≤ c2∥x∥2

∂h

∂t
+

∂h

∂x
f(t, x) ≤ −c3h(t, x) + ϱ

for all t ≥ 0 and x ∈ Rn, where c1, c2 and c3 are positive constants. Then Br is
globally uniformly exponentially stable, with r =

√
ϱ/c1c2.

Now we state the stabilizability problem associated with the following nonlinear time-
varying control system:

dx

dt
= f(t, x(t), u(t)), t ≥ 0, (16)

where x ∈ Rn, u ∈ Rm, f(t, x, u) : R+ × Rn × Rm → Rn.

Definition 7. The feedback controller u(t) = u(t, x(t)), where u(t, x) : R+×Rn → Rm

stabilizes globally uniformly asymptotically or exponentially the control system (16) if
the closed-loop system

dx

dt
= f(t, x(t), u(t, x(t))) (17)

is globally uniformly asymptotic or exponential stable.

In the case where f(t, 0, 0) ̸= 0 for a certain t ≥ 0. We can formulate the above
definition as:

Definition 8. The feedback controller u(t) = u(t, x(t)) stabilizes globally uniformly
asymptotically or exponentially the control system (16) with respect Br, if the as-
sociated closed-loop system (17) is globally practically uniformly asymptotically or
exponentially stable.
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From Theorem 3, one has the following result which concern the asymptotic stabiliz-
ability problem of system (16).

Theorem 5. Suppose that there exist a stabilizing feedback controller u(t) = u(t, x(t))
for control system (16) and a continuously differentiable function h(·, ·) : R+ × Rn → R,
K∞ functions α1(·), α2(·), a K function α3(·) and a small positive real number ϱ such
that the following inequalities hold for all t ∈ R+ and x ∈ Rn

α1(∥x∥) ≤ h(t, x) ≤ α2(∥x∥)

∂V

∂t
+

∂h

∂x
f(t, x, u(t, x(t))) ≤ −α3(∥x∥) + ϱ.

Then system (16) in closed-loop with the feedback controller u = u(t, x(t)) is globally
uniformly practically asymptotically stable with r = α−1

1 ◦ α2 ◦ α−1
3 (ϱ).

Also, we can say that the control system (16) is globally uniformly exponentially
stabilizable by the feedback control u(t) = u(t, x(t)), where u(t, x) : R+ × Rn → Rm,
if the closed-loop system (17) is globally uniformly exponentially stable.

Definition 9. Br is globally uniformly exponentially stabilizable by the feedback con-
trol u(t) = u(t, x(t)) if there exist γ > 0 and k > 0 such that for all t ≥ t0 ≥ 0 and
x0 ∈ Rn, the solution x(t) of the closed-loop system (17) satisfies:

∥x(t)∥ ≤ k∥x0∥exp(−γ(t− t0)) + r.

In this case, system (16) is globally practically uniformly exponentially stabilizable by
the feedback control u(t) = u(t, x(t)).

One has the following result which concern the exponential stabilizability problem of
system (16).

Theorem 6. Let u = u(t, x(t)) an exponential stabilizing feedback law and

h : [0,+∞[×Rn → R

be a continuously differentiable Lyapunov function such that

c1∥x∥2 ≤ h(t, x) ≤ c2∥x∥2

∂h

∂t
+

∂h

∂x
f(t, x, u(t, x(t))) ≤ −c3h(t, x) + ϱ

for all t ≥ 0 and x ∈ Rn, where c1, c2 and c3 are positive constants. Then Br is
globally uniformly exponentially stable with r =

√
ϱ/c1c2, with respect the closed-loop

system (17).

Now, we will study the practical exponential stability problem a class of nonlinear
systems of the form (6). It is worth to notice that the origin is not required to be an
equilibrium point for the system (6). This may be in many situations meaningful from
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a practical point of view specially, when stability for control systems is investigated.

Consider the class of systems that can be modeled by:

dx

dt
= µ(A(α(t)) +B(t))x+ νφ(t, x, u), t ≥ 0, (18)

where A(α(t)) ∈ Rn×n is a matrix given by A(α(t)) = α1(t)A1+α2(t)A2, with α1(t)+
α2(t) = 1, αi(t) ∈ R+, ∀t ≥ 0, B(t) ∈ Rn×n is T-periodic matrix, µ ∈ R, ν ∈ R are
parameters and φ(t, x, u) is a smooth vector function. u denotes the control of the
system. We suppose that there exists a stabilizing feedback control u(t) = u(t, x(t)),
where the function u is a suitable feedback controller such that the condition (7) is
replaced as follows: φ(t, x, u) is a smooth vector function such that, for all t ≥ 0 and
x ∈ Rn,

φ(t+ T, x, u(t, x(t))) = φ(t, x, u(t, x(t)))

and
∥φ(t, x, u(t, x(t)))∥ ≤ k∥x∥1+δ + r, δ ≥ 0, k > 0, r > 0.

The practical uniform exponential stability can therefore be established as in Theo-
rem 2, an d an estimation as in Definition 9 can be obtained which gives that the
system (18) in closed-loop with u(t) = u(t, x(t)) is practically globally uniformly
exponentially stable.

5 Conclusion

Asymptotic stability of a class of parametric differential equations has been studied.
New sufficient conditions for practical uniform asymptotic exponential stability of so-
lutions for parametric systems with periodic coefficients are obtained. An application
to control system is given.
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