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Abstract

The present paper aimed to explore the linear moment problem for the
real sequences defined by the nonhomogeneous linear recursive relation.
Various properties are provided, especially, those related to the Hankel
matrices. Some considerations in connection with K-moment problem,
for the nonhomogeneous recursive are discussed.
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1 Introduction

In view of its fundamental role in various fields of mathematics and applied
science, the linear moment problem has been extensively studied in the literature
(see [4,5,9,11–13]). Especially, it has been shown that this problem is useful for
some topics in physics, such that the quantum dynamical systems, the resolvent
Rφ(λ) of a given Hamiltonian A, which can be written as an infinite series in
terms of 1/λ, whose coefficients are the moment µn = ⟨φ|An|φ⟩ of order n of the
operator A, where φ is a state vector of the given system (see [4,12] for example).
Furthermore, the linear moment problem is also related to the Lanczos numerical
method, which is an important technique for finding the positions of n particles
such that the first 2n − 1 moments own given values (see [5, 13] for example).
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Recently, the linear moment problem has been investigated in the literature, by
various methods (see, for example, [4, 9, 11,12]).

The linear moment problem is simple to formulate. Indeed, let H be a
real separable Hilbert space, L(H) be the space of linear operators on H and
S(H) ⊂ L(H) the subspace of self adjoint operators on H. For a given operator
A ∈ L(H) and non-vanishing x ∈ H, the sequence Γ = {αn}n≥0 defined by
αn = ⟨Anx|x⟩ for n ≥ 0, is called the moment sequence of A on x, and αn is
the moment of order n of the operator A on x. The linear moment problem
is the reciprocal of the previous situation. More precisely, let Γ = {αn}0≤n≤p

(p ≤ +∞) be a sequence of real numbers, the linear moment problem associated
with Γ consists to find a self-adjoint operator A ∈ S(H) and a non-vanishing
vector x ∈ H such that,

αn = ⟨Anx|x⟩, for 0 ≤ n ≤ p. (1)

The problem (1) is called the full linear moment problem when p = +∞ and
the truncated linear moment problem for p < +∞ (see [7–9,12], for example).

On the other hand, the linear moment problem (1) for the sequence Γ, is
also related to the classical power K-moment problem (K is a closed set of R),
whose aim is to find a positive Borelean measure µ with supp(µ) ⊂ K such that

αn =

∫
K

tndµ(t), for 0 ≤ n ≤ p, (2)

where p ≤ +∞. The moment problem (2) is important in operator theory,
particularly, it is related to the study of the shift of subnormal operators and
subnormal extension (see [1, 3, 6–8]). Recently, the two preceding moment
problems (1) and (2) have been studied in [3,9–11], for some sequences defined
by linear recursive relations. Moreover, it was established the closed connection
between the full and the truncated moment problem for recursive sequences
in [9, 11]. More precisely, let {un}n≥0 be the sequence satisfying the following
linear recursive relation of order r,

un+1 = a0un + a1un−1 + · · ·+ ar−1un−r+1 for n ≥ r − 1, (3)

where u0, u1, . . . , ur−1 are the initial data, it was shown in [9–11] that, for the
linear moment problems (1), the full one (p = +∞) and the truncated one
(p < +∞) are closely related. Especially, it was shown in [9] that in the finite
dimensional case (dimR H < +∞), the two preceding linear moment problems
(the full and the truncated) are identical. On the other side, it was shown in [9]
that the full and truncated moment problem (2), for the recursive sequence (3),
are equivalent.

The purpose of this paper is to study the linear moment problem (1), for
a real non-homogeneous recursive sequence {vn}n≥0 of order r, defined by the
following recursive relation,

vn+1 = a0vn + a1vn−1 + · · ·+ ar−1vn−r+1 + cn+1 for n ≥ r − 1, (4)
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where the coefficients a0, . . . , ar−1 (r ≥ 2, ar−1 ̸= 0) are real numbers, v0 =
α0, . . . , vr−1 = αr−1 are the initial values, and C = {cn}n≥r is a (non trivial)
real sequence. It seems to us that properties of the linear moment problem (1)
for nonhomogeneous sequences (4), can be useful for the study of certain related
perturbed physical systems. For the K-moment problem (2), it can be also, for
studying the perturbed moment, of the shift of operators.

In this study, we characterize the solution of the linear moment problem (1)
for sequences (4) in the general setting, especially, when the operator A ∈ S(H),
namely, A is self-adjoint. When the real separable Hilbert space H is of finite
dimension and the non-homogeneous sequence {vn}n≥0 is a moment sequence
of an operator A, on a non-vanishing x ∈ H, we establish that the sequence
{cn}n≥r is a linear recursive sequence of type (3). And when the real separable
Hilbert space H is of infinite dimension and the non-homogeneous sequence
{vn}n≥0 is a moment sequence of an operator A, on a non-vanishing x ∈ H,
then the general term of the sequence {cn}n≥r, is expressed as a limit of

cn = lim
s→+∞

c(s)n , where c
(s)
n is a linear recursive sequence of type (3). We establish

the solution of the linear moment problem (1), using the properties of the Hankel
matrices. The special case when {cn}n≥r is a linear recursive sequence of type
(3), is discussed. Moreover, the K-moment problem (2) for nonhomogeneous
recursive sequences (4) is provided, using the spectral measures of self-adjoint
operators. By the way, some other consequences are derived, especially, the
Stieltjes and Hamburger moment problems (2), for the nonhomogeneous recursive
sequences (4), are discussed through the spectral measures of self-adjoint operators.
It should be noted that the study of these two problems for the sequences (4),
is not common in the literature.

2 Linear moment problem and sequences (4)

Let improve the connections between solutions of (4) considered as a difference
equation and the linear moment problem (1). Let {Qn}n≥r be the family of
polynomials defined by Qn(z) = zn−rP (z), where P (z) = zr−a0z

r−1−a1z
r−2−

· · · − ar−1, is the so-called characteristic polynomial of the homogeneous part
of the sequence (4). Let x ̸= 0 be an element of H and A ∈ S(H). Suppose
that vn = ⟨Anx|x⟩, for every n ≥ 0. Then, we have, ⟨An+1x|x⟩ = a0⟨Anx|x⟩+
· · ·+ ar−1⟨An−r+1x|x⟩+ cn+1, for every n ≥ r− 1. Therefore, we derive cn+1 =
⟨Qn+1(A)x|x⟩, for every n ≥ r − 1. Consequently, we can state the following
proposition.

Proposition 2.1. Let T = {vn}n≥0 be a sequence (4), of characteristic polynomial
P (z) = zr−a0z

r−1−a1z
r−2−· · ·−ar−1. Suppose that T = {vn}n≥0, is a moment

sequence of an operator A ∈ S(H), namely, vn = ⟨Anx|x⟩, for every n ≥ 0,
where x ̸= 0. Then, the sequence {cn}n≥r is given by cn+1 = ⟨Qn+1(A)x|x⟩, for
every n ≥ r − 1, where Qn(z) = zn−rP (z).

Therefore, the question of studying the converse of the preceding affirmation
of Proposition 2.1 arises.
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Theorem 2.2. Let T = {vn}n≥0 be a sequence (4), of characteristic polynomial
P (z) = zr −a0z

r−1−a1z
r−2−· · ·−ar−1. Let A ∈ S(H) and x ̸= 0 ∈ H. Then,

we have vn = ⟨Anx|x⟩, for every n ≥ 0, if and only if, vn = ⟨Anx|x⟩ for
n = 0, 1, . . . , r − 1 and cn = ⟨An−rP (A)x|x⟩, for n ≥ r.

Proof. Suppose vn = ⟨Anx|x⟩ (n ≥ 0), for some x ̸= 0 in H and A ∈ S(H).

Then, we have ck = vk−
r−1∑
j=0

ajvk−j−1 =

〈
(Ak −

r−1∑
j=0

ajA
k−j−1)x|x

〉
=

〈
Ak−rP (A)x|x

〉
,

for every k ≥ r. Conversely, suppose that vn = ⟨Anx|x⟩, for n = 0, 1, . . . , r − 1
and cn = ⟨An−rP (A)x|x⟩ for every n ≥ r. Therefore, we have

vr =
r−1∑
j=0

aj⟨Ar−j−1x|x⟩+ ⟨P (A)x|x⟩ = ⟨Arx|x⟩.

And, by induction, we derive that vn = ⟨Anx|x⟩, for every n ≥ 0.

As a consequence of Theorem 2.2, we obtain the following corollary.

Corollary 2.3. Let A ∈ S(H) and x ∈ H, then under the data of Theorem 2.2,
the following statements are equivalent,

(i) vn = ⟨Anx|x⟩, for every n ≥ 0.

(ii) vn = ⟨Anx|x⟩, for n = 0, 1, . . . , 2r−1, and cn =
r−1∑
j=0

ajcn−j−1+⟨An−2rz|z⟩

for every n ≥ 2r, where z = P (A)x.

Proof. It suffices to establish the equivalence between (ii) and the second statement
of Theorem 2.2. Let A be a self-adjoint operator, suppose that vn = ⟨Anx|x⟩
for n = 0, 1, . . . , r− 1 and cn = ⟨An−rP (A)x|x⟩, for every n ≥ r. Then, for z =

P (A)x, we have, ⟨An−2rz|z⟩ = ⟨An−rx|P (A)x⟩ −
r−1∑
j=0

aj⟨An−r−j−1P (A)x|x⟩ =

cn −
r−1∑
j=0

ajcn−j−1, for any n ≥ 2r. Conversely, suppose that (ii) holds. A

direct computation shows that cn = ⟨An−rP (A)x|x⟩, for n = r, r+1, . . . , 2r−1.
On the other hand, by induction we prove that cn = ⟨An−rP (A)x|x⟩, for every
n ≥ 2r. It follows that (i) and (ii) are equivalent.

We conclude this section by the following observation. Let T = {vn}n≥0 be a
sequence (4), whose characteristic polynomial is P (z) = zr −a0z

r−1−a1z
r−2−

· · · − ar−1. Suppose that there exist A ∈ S(H) and x ∈ H such that vn =

⟨Anx|x⟩. Then, we have, c2k −
r−1∑
j=0

ajc2k−j−1 = ∥Ak−rP (A)x∥2 for every k ≥ r.

Therefore, when c2k ̸= 0, for some k ∈ N, we have c2k >
r−1∑
j=0

ajc2k−j−1, for

any k ≥ r. This later inequality is a necessary condition for the existence of
the solution of the linear moment problem (1), for the sequence T = {vn}n≥0

defined by (4).
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3 The linear moment problem (1) for sequences
(4)

Let H be a finite dimensional Hilbert space over R (m = dimR H) and T =
{vn}n≥0 a sequence (4). A straightforward computation and by using Theorem
2.2, allows us to see that T = {vn}n≥0 is a moment sequences of a self-adjoint

operator A on a non-vanishing vector x of H if and only if vn =
s∑

j=1

λj
n∥xj∥2

for n = 0, 1, . . . , r − 1 and

cn =
s∑

j=1

P (λj)

λr
j

∥xj∥2λj
n, (5)

where xj = Πjx ∈ Hj (0 ≤ j ≤ s), the subspace of the eigenvectors of A,
corresponding to the eigenvalues λj (0 ≤ j ≤ s). Expression (5) is nothing else
but the analytic formula of the sequence {cn}n≥r, viewed as a linear recursive
sequence of type (3) of order s. More precisely, (5) implies that {cn}n≥r is
a linear recursive sequence of type (3), of characteristic polynomial K(z) =
s∏

j=1

(z − λj). Thus, we can state the following proposition.

Proposition 3.1. Let T be a sequence (4). Suppose that T is a moment
sequences of a self-adjoint operator A on the finite dimensional Hilbert space
H. Then, the nonhomogeneous part C is a linear recursive sequence of type (3)
of order s (with s ≤ dimH). More precisely, the characteristic polynomial of C
is K(z) =

s∏
j=1

(z − λj), where the λj (0 ≤ j ≤ s) are the eigenvalues of A.

Suppose thatH is a separable real Hilbert space (over C) of infinite dimension.
The simplest spectral theorem (after the algebraic case) concerns a compact self-
adjoint and a compact normal operator A on H, and asserts that H coincide
with the closure of the orthogonal sum of the eigenspaces Hn, corresponding to
all possible eigenvalues {λn}n≥0. With a view to generalization it is convenient

to express it under the spectral resolution form Ax =
+∞∑
n=0

λnΠnx, where Πn is

an orthoprojection onto Hn, the eigenspace corresponding to the eigenvalue λj ,

and x =
+∞∑
n=0

Πnx. We consider the class of operators satisfying the Spectral

Theorem, which are called spectral operators or S-operators for short.
Let T = {vn}n≥0 be a sequence (4), with characteristic polynomial P .

Suppose that T is a sequence of moments of an S-operator A of L(H), on a
non-vanishing vector x ∈ H, namely, vn = ⟨Anx|x⟩, for every n ≥ 0, where A is

an S-operator and x =
+∞∑
n=0

Πnx ∈ H.

Let s ≥ 1 and consider the sequence {v(s)n }n≥0 defined as follows: v
(s)
j = vj
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for i = 0, 1, . . . , r − 1, and

v
(s)
n+1 = a0v

(s)
n + a1v

(s)
n−1 + · · ·+ ar−1v

(s)
n−r+1 + c

(s)
n+1, (6)

for n ≥ r − 1, where c(s)n =
s∑

p=0

P (λp)

λr
p

∥xp∥2λp
n. It is easy to see that cn =

lim
s→+∞

c
(s)
n . For n = r, expression (6) shows that we have vr = lim

s→+∞
v
(s)
r . By

induction on n, we have vn = lim
s→+∞

v(s)n , for every n ≥ r. In conclusion, we

have the following result.

Theorem 3.2. Let T = {vn}n≥0 be a sequence (4), with characteristic polynomial
P . Suppose the Hilbert space H is of infinite dimension and that T is a moment

sequences of an S-operator A on H, on a non-vanishing vector x =
+∞∑
n=0

Πnx.

Then, we have vn = lim
s→+∞

v(s)n , for every n ≥ r, where {v(s)n }n≥0 is a sequence

(4), whose associate nonhomogeneous term is

c(s)n =
s∑

p=0

P (λp)

λr
p

∥xp∥2λp
n, (7)

where P (z) = zr − a0z
r−1 − a1z

r−2 − · · ·− ar−1 (ar−1 ̸= 0) is the characteristic
polynomial of T and xp = Πpx ∈ H. Moreover, expression (7) stands for the

analytic formula of the sequence {c(s)n }n≥0, viewed as a linear recursive sequence
of type (3).

From Theorem 3.2, we derive that

cn =
+∞∑
p=0

P (λp)

λr
p

∥xp∥2λp
n. (8)

Remark 3.3. If there exists s ≥ 1 such that λp = 0, for every p ≥ s+1, we show
that expressions (5) and (8) are identical. Suppose that for every N > 0 there
exists k ≥ N such that λk ̸= 0. Therefore, expression (8) doesn’t represent a
recursive sequence of finite order. Meanwhile, we can approximate this situation
by a family of sequences (4), whose associated cn is given by expression (7).

4 Hankel matrices and solution of the linear moment
problem (1)

In this section, we present algebraic treatment of the Hankel matrix related
to the sequences defined by (4), and its use for characterizing the existence of
solutions for the linear moment problem (1).

Let Hk be the Hankel matrix of size k+1, whose entries are defined from the
elements of the sequence T = {vi}i≥0, in the sense that Hk := (vi+j)0≤i,j≤k.

6
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The jth column of Hk will be denoted by Vj := (vj+ℓ)
k
ℓ=0 , 0 ≤ j ≤ k, so that

Hk can be briefly written as Hk = (V0 V1 · · · Vk). Observe that we can
verify that

Vr+k = a0Vr+k−1 + a1Vr+k−2 + · · ·+ ar−1Vk + Ĉr+k, (9)

where Ĉr+k := (cr+ℓ)
r+k−1
ℓ=0 .

With a vectorial representation, we can write the matrix Hr+n as follows

Hr+n =
(
V0 V1 · · · Vr−1 Vr · · · Vr+k · · · Vr+n−1

)
.

Using expression (9) and some computational techniques emanated from determinant
properties, we get,

detHr+n = det
(
V0 V1 · · · Vr−1 Ĉr · · · Ĉr+k · · · Ĉr+n−1

)
.

Repeating the same treatment on the matrix Sk := (vi+j+1)0≤i,j≤k, one gets
out of it by the following result.

Proposition 4.1. Let T = {vn}n≥0 be a sequence (4),

Hr+n = (vi+j)0≤i,j≤r+n−1 and Sr+n = (vi+j+1)0≤i,j≤r+n−1

be the Hankel matrices associated with T . Then, we have

detHr+n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v0 · · · vr−1 cr · · · cr+n−1

:
. . . : :

. . . :
vr−1 · · · v2r−2 c2r−1 · · · c2r+n−2

vr · · · v2r−1 c2r · · · c2r+n−1

:
. . . : :

. . . :
vr+n−1 · · · v2r+n−2 c2r+n−1 · · · c2r+2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(10)

and

detSr+n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v1 · · · vr cr+1 · · · cr+n

:
. . . : :

. . . :
vr · · · v2r−1 c2r · · · c2r+n−1

vr+1 · · · v2r c2r+1 · · · c2r+n

:
. . . : :

. . . :
vr+n · · · v2r+n−1 c2r+n · · · c2r+2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (11)

Expression (10) shows that, for n ≥ 0, it appears only the columns which
depend on the entries of the sequence {cn}n≥r after the r-th column, in the
determinant of the Hankel matrix Hr+n. A similar situation is observed for the
matrix Sk = (vi+j+1)0≤i,j≤k .

If the sequence C = {cn}n≥r is also of type (3) of order s, then the r+ s− th
column of the matrixHr+n is a linear combination of the columns r, r+1, . . . , r+
s− 1, and the r+ s+1− th column of the matrix Sr+n is a linear combination
of the columns r+ 1, r+ 2, . . . , r+ s. Therefore, by Proposition 4.1, we get the
following property.

7
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Proposition 4.2. If the sequence {cn}n≥r is also a linear recursive sequence
of type (3) of order s, then we have,

1. detHr+n = 0, for n ≥ s, if and only if, the r + s + 1-column of the
matrix Hr+n is a linear combination of the previous s columns, namely,
the r, r + 1, . . . , r + s− 1 columns of the matrix Hr+n.

2. detSr+n = 0, for n ≥ s + 1, if and only if, the s + 1-column of the
matrix Sr+n is a linear combination of the previous s columns, namely,
the r + 1, r + 2, . . . , r + s columns of the matrix Hr+n.

The two Hankel matricesHr+n = (vi+j)0≤i,j≤r+n−1 and Sr+n = (vi+j+1)0≤i,j≤r+n−1

and their determinants (10)-(11), play a central role for solving the two moment
problems (1)-(2) and their applications.
We recall that it was established in [12, Lemma 1.1] that a N × N Hermitean
matrix A is strictly positive definite if and only if each sub-matrix Ak =
(aij)1≤i,j≤k has det(Ak) > 0, for k = 1, 2, . . . , N . For a given Hankel matrix
H = (mi+j)i,j≥0, we consider the family of sub-matrices Hn = (mi+j)0≤i,j≤n.
Then, [12, Proposition 1.2] shows that for a Hankel matrix the family of sesquilinear
form F = {Hn}n≥0, defined by Hn(α, β) =

∑n
j,k=0 mj+kαj β̄k, is (strictly)

positive definite if and only if det(Hn) > 0, whereHn = (mi+j)0≤i,j≤n. Equivalently,
we say that the Hankel matrix Hn = (mi+j)0≤i,j≤n is positive definite if and
only if det(Hn) > 0, where Hn = (mi+j)0≤i,j≤n.

In order to establish the existence of solution of the linear moment problem
(1), we will present a result of the closed relation between Hankel positive
matrix, self-adjoint operator and measure. More precisely, we recall that from [6]
the following theorem.

Theorem 4.3. If {vn}n≥0 is a sequence of real numbers, the following statements
are equivalent.

(a) There is a self-adjoint operator A and a vector e such that e ∈ domAn

for all n and vn = ⟨Ane, e⟩, for all n ≥ 0.

(b) If α = (α0, . . . , αn), where αj ∈ C, then we have

n∑
j,k=0

mj+kαjᾱk ≥ 0, for

every n ≥ 0.

(c) There is a positive regular Borelean measure µ on R such that

∫
|t|ndµ(t) <

∞ for all n ≥ 0 and vn =

∫
tndµ(t).

Therefore, for the Hankel matrix H = (mi+j)i,j≥0, the second assertion of
Theorem 4.3, implies that the sesquilinear form defined by Hn(α, β) =

∑n
j,k=0 mj+kαj β̄k,

is a (strictly) positive definite form if and only if the matrix Hn = (mi+j)0≤i,j≤n

is (strictly) positive definite, for every n ≥ 0. Equivalently, the second assertion

8
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of Theorem 4.3, shows that the Hankel matrix H = (mi+j)i,j≥0 is positive, or
in an equivalent way, detHn ≥ 0, for every n ≥ 0, where Hn = (mi+j)0≤i,j≤n.

Combining Proposition 4.1 and Theorem 4.3, we can formulate the following
result.

Theorem 4.4. Let T = {vn}n≥0 be a sequence (4). Then, the following
assertions are equivalent,

1. The linear moment problem (1) for sequence (4) owns a solution.

2. The Hankel matrix H = (vi+j)i,j≥0 is positive.

3. detHn ≥ 0, for every 0 ≤ n ≤ r − 1 and detHn+r ≥ 0, for every n ≥ 0,
where detHn+r is given by (10).

Let T = {vn}n≥0 be a sequence (4) and suppose that the associated nonhomogeneous
part C = {cn}n≥r is a sequence of type (3) of order s, whose characteristic
polynomial is Q(z) = zs − b0z

s−1 − b1z
s−2 − · · · − bs−1. Let R(z) = zr −

a0z
r−1−a1z

r−2−· · ·−ar−1 be the characteristic polynomial of the homogeneous
part of (4). The linearization process of [2, Theorem 2.1 (Linearization Process)]
applied to the sequence (4), allows us to show that T = {vn}n≥0 is a sequence of
type (3) of order r+s, with initial data v0, v1, . . . , vr+s−1 and whose coefficients
c0, c1, . . . , cr+s are obtained from its characteristic polynomial given by P (z) =
Q(z)R(z). Therefore, following Proposition 4.2, we get the following property.

Proposition 4.5. Let T = {vn}n≥0 be a sequence (4) and Hr+n = (vi+j)0≤i,j≤r+n−1

its associated Hankel matrices of order r + n. Suppose that C is a sequence of
type (3) of order s. Then, we have detHr+n = 0, for every n ≥ s.

On the other hand, let A be a self-adjoint operator on a Hilbert space
H be a solution of the linear moment problem (1) on a vector on a non-
vanishing x ∈ H, associated with the sequence T = {vn}n≥0 defined by (4).
By the linear recursive relation (3), related to the linearized expression of
(4), we have ⟨AnP (A)x|x⟩ = ⟨P (A)x|Anx⟩ = 0, for every n ≥ 0, where
P (z) = Q(z)R(z) is the characteristic polynomial of the linearized sequence
of (4). Therefore, we have ⟨AnP (A)x|AmP (A)x⟩ = 0, for every n ≥ 0, m ≥ 0,
especially ∥AnP (A)x∥ = 0, for every n ≥ 0. This implies that Anx is a linear
combination of x, Ax, . . . , Ar+s−1x. Therefore, when the nonhomogeneous part
C is an s−GFS, if the linear moment problem owns a solution A, a self-adjoint
operator on a Hilbert spaceH, then it has a solution A on some r+s-dimensional
Hilbert space (for more details see [11, Proposition 2.2 ]). This allows us to
suppose that the Hilbert space H is of finite dimension (r + s). Therefore, we
have the following result.

Proposition 4.6. Let T = {vn}n≥0 be a sequence (4), with positive definite
associated Hankel matrix Hr, and let P (z) the characteristic polynomial of its
homogeneous part. Suppose that C is a linear recursive sequence of type (3) of
order s, whose characteristic polynomial is Q(z). Then, there exists a (deg(P )+
deg(Q))-dimensional Hilbert space H(T ) and a self-adjoint operator A on H(T ),
solution of the moment problem (1).
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Proposition 4.6 shows the main role of the recursiveness of the sequence
{cn}n≥0, in reducing the study of the linear moment problem (1) to the finite
dimensional Hilbert space H.

5 Some considerations on the K-moment problems
(2) for sequences (4)

The aim here is to apply results of the preceding sections for solving the K-
moment problem (2) for nonhomogeneous recursive sequences (4), using results
of the linear moments problems in Hilbert spacesH. More precisely, the solution
of K-moment problem (2) is obtained in terms of representing measure of the
self-adjoint operator A and the vector x ∈ H solution of the linear moment
problem (1), for the nonhomogeneous recursive sequences (4). The Stieltjes and
Hamburger moment problems for the nonhomogeneous recursive sequences (4)
are discussed.

5.1 K−moment problems associated with sequences (4)

Recall that the purpose of the K−moment problem associated with a given
sequence T = {vn}0≤n≤p, where K is a closed subset of R, is to find a positive
Borel measure µ such that Expression (2) is verified, namely,

vn =

∫
K

tndµ(t) and supp(µ) ⊂ K.

As mentioned above, the problem (2) has been studied in the literature, by
various methods and techniques. It is called the full moment problem when
p = +∞ and the truncated moment problem, for p < +∞ (see [7–9]). Using
the spectral representation of the self-adjoint operators, we can show that the
linear moment problem (1) and the moment problem (5.1) are equivalent (see
for example [6]). Moreover, using Theorem 4.3 and Theorem 4.4, we get,

Theorem 5.1. Let T = {vn}n≥0 be a sequence (4). Suppose that the Hankel
matrix H = (vi+j)i,j≥0 is positive. Then, there exists a positive Borel measure
µ such that

vn =

∫
K

tndµ(t),

where K = supp(µ). Namely, the there exists a positive Borel measure µ solution
of the K-moment problem (2).

Now consider the moment problem (2) for a sequence T = {vn}n≥0 given by
(4). Let µ be a positive Borel measure of support K. Then, following the proof

of Theorem 2.2, we have vn =

∫
K

tndµ(t) for every n ≥ 0, if and only if, vn =∫
K

tndµ(t) for any n = 0, . . . , r−1 and cn =

∫
K

tn−rP (t)dµ(t) for n ≥ r, where
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K = supp(µ). Moreover, a direct computation allows us to get the following
result.

Proposition 5.2. Under the preceding data, the following assertions are equivalent.

(i) vn =
∫
K
tndµ(t), for every n ≥ 0, where K = supp(µ).

(ii) vn =
∫
K
tndµ(t) for n = 0, . . . , 2r−1 and cn−

r−1∑
j=0

ajcn−j−1 =
∫
K
tn−2rP (t)

2
dµ(t),

for every n ≥ 2r, where K = supp(µ).

It is easy to show that the second assertion of the Proposition 5.2 implies

that c2k −
r−1∑
j=0

ajc2k−j−1 =

∫
[tk−rP (t)]

2
dµ(t), for any k ≥ r, and if there

exists k0 ≥ r such that c2k0 −
r−1∑
j=0

ajc2k0−j−1 = 0, then supp(µ) ⊂ Z(P ) ∪ {0}

or equivalently the sequence T is an r − GFS, in which case the sequence C
vanish. This allows us to give a necessary condition for a sequence (4) to be a
moment sequences of some positive Borel measure. Thus, we recover Lemma
2.2 of [10], considered for the special case of the Hausdorff moment problem.
Since the sequence C is a nontrivial, if a sequence (4) is a moment sequence of

a positive Borel measure µ, we have c2k >
r−1∑
j=0

ajc2k−j−1, for k ≥ r. Hence, we

can obtain the following.

Proposition 5.3. Let T = {vn}n≥0 be a sequence (4). If T is a moment

sequences of a positive Borel measure µ, then c2k >
r−1∑
j=0

ajc2k−j−1 for any k ≥ r.

Using Proposition 4.5, we can easily establish the following.

Proposition 5.4. Let T = {vn}n≥0 be a sequence (4), µ a positive Borel
measure and ρ a measure given by trdρ(t) = P (t)dµ(t). Then µ is a solution
of the full moment problem (2) associated with T if and only if µ is a solution
of the truncated moment problem (2) associated with Tr = {vn}0≤n≤r−1 and
{cn+r}n≥0 is a moment sequences of ρ.

Particularly, when T = {vn}n≥0 is a sequence of type (3) of order r (i.e
cn = 0, for every n ≥ 0), then the second assertion of the preceding proposition
is equivalent to the fact that µ is a solution of the truncated moment problem
(2) associated with Tr = {vn}0≤n≤r−1 and

∫
K
tndρ(t) =

∫
K
tn−rP (t)dµ(t), for

every n ≥ r. The last statement is equivalent to supp(µ) ⊂ Z(P ), and we obtain
Lemma 2.2 of [10] in the particular case of the Hausdorff moment problem.

5.2 Moment problems (2) associated with sequences (4),
with cn satisfying (3)

Let consider the linear moment problem (1) for sequence sequences (4), where
the sequence C = {cn}n≥r satisfies the linear recursive relation (3). Then, by
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Proposition 4.2, Theorem 4.4, Proposition 4.6 and Theorem 5.1, we get the
following result concerning the Hamburger moment problem for sequences (4).

Theorem 5.5. Let T = {vn}n≥0 be a sequence (4). Suppose that C = {cn}n≥0

is a sequence of type (3) of order s. Then, a necessary and sufficient condition
that there exists a measure µ solution of the truncated Hamburger moment
problem associated with a sequence T = {vn}n≥0 is that the Hankel matrix
Hr+s is positive definite or equivalently detHn > 0 for n = 0, 1, . . . , r + s.

Similarly, we get the following result concerning the Stieltjes moment problem
for sequences (4).

Theorem 5.6. Let T = {vn}n≥0 be a sequence (4). Suppose that C = {cn}n≥0

is a sequence of type (3) of order s. Then, a necessary and sufficient condition
that there exists a measure µ solution of the truncated Stieltjes moment problem
associated with a sequence T = {vn}n≥0 is that the two matrices Hr+s and
Sr+s are positive definite or equivalently detHn > 0 and detSn > 0 for n =
0, 1, . . . , r + s.

Note that a similar result can be established for the Hausdorff moment
problem.

Acknowledgements.

The second author expresses his sincere thanks to the INMA and Universidade
Federal de Mato Grosso do Sul – UFMS – Brazil for their valuable support.
Special thanks to Prof. Elen Pereira.

References

[1] N. I. Akhiezer, The classical moment problem and some related questions
in analysis, 2 Eds., New York: Hafner Publ. Co. 1965.

[2] R. Ben Taher, M. Mouline and M. Rachidi, Solving some general
nonhomogeneous recurrence relations of order r by a linearization method
and an application to polynomial and factorial polynomial cases, Fibonacci
Quart. 40, No. 1, 79-84, 2002.

[3] R. Ben Taher, M. Rachidi, E. H. Zerouali, Recursive subnormal completion
and the truncated moment problem, Bull. Lond. Math. Soc. 33 , No. 4,
425-432, 2001.

[4] D. Bessis, M. Vallini, Perturbative-variational approximations to the
spectral properties of semibounded Hilbert space operator, based on the
moment problem with finite or divergin moments. Application to quantum
mechanical systems, J. Math. Phys. 16, No. 3, 462-474, 1975 .

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.1, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

38 Mouniane 27-39



[5] C. Brezinski, The methods of Vorobyev and Lanczos, Linear Algebra Appl.
234, 21-41, 1997.

[6] J. B. Conway, A course in functional analysis, 2 Eds., Springer-Verlag,
1990.

[7] R. Curto, L. Fialkow, Flat extensions of positive moment matrices :
Recursively generated relations, Mem. Amer. Math. Soc. 136, No. 648,
1-54, 1998.

[8] R. Curto, L. Fialkow, Solution of the truncated complex moment problem
for flat data, Mem. Amer. Math. Soc. 119, No. 568, 1-50, 1996.

[9] B. El Wahbi, M. Rachidi, r-Generalized Fibonacci sequences and the linear
moment problem, Fibonacci Quart. 38, No. 5, 368-394, 2000.

[10] B. El Wahbi, M. Rachidi, On r-Generalized Fibonacci sequences and
Hausdorff moment problem, Fibonacci Quart. 39, No. 1, 5-11, 2001.

[11] B. El Wahbi, M. Rachidi, E. H. Zerouali, Recursive relations, Jacobi
matrices, moment problems and continued fractions, Pacific J. Math. 216,
39-50, 2004.

[12] B. Simon, The classical moment problem as a self-adjoint finite difference
operator, Adv. Math. (N. Y), 137, No. 1, 82-203, 1998.

[13] R. R. Whitehead, Moment Methods and Lanczos Methods. In B.J. Dalton,
S.M. Grimes, J.P. Vary, S.A. Williams (eds), Theory and Applications of
Moment Methods in Many-Fermion Systems, Springer US, Boston, MA,
pp. 235-255, 1980.

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.1, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

39 Mouniane 27-39


