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ABSTRACT 
For nonbinary quantum error-correcting codes, we present a new explanation and demonstrate a 
generalized CSS construction. Nonbinary quantum stabilizer codes of various lengths, dimensions, and 
minimum distances from algebraic curves can be constructed using this method. From a Garcia- 
Stichtenoth tower of function fields, we also provide polynomial-time constructible asymptotic good 
nonbinary quantum codes. 
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INTRODUCTION 
There are a number of ways that binary quantum error-correcting codes have been made. Algebraic 
geometry codes are used in one interesting construction. The idea is to apply the binary CSS construction 
to the asymptotically good algebraic geometry codes that come from the Garcia-Stichtenoth tower of 
function fields over𝔽𝑞 2 (where 𝑞 is a power of 2 ) attaining the Drinfeld-Vladut bound. 

It makes sense to think about nonbinary quantum codes. Rains demonstrates that there are applications 
for which nonbinary quantum codes would be more appropriate than binary quantum codes, in addition 
to the straightforward fact that nonbinary error-correcting codes are intriguing in the classical context. 
Despite the fact that nonbinary quantum codes have been considered, the binary case has received the 
majority of attention thus far. The issue of asymptotically good nonbinary quantum codes, in particular, 
has not previously been investigated. 
Based on two binary linear codes provided by Calderbank et al., we present a new exposition and proof of 
a nonbinary version of the generalized binary CSS construction. for an alternative strategy. For nonbinary 
quantum codes, we can derive a variety of parameters by employing this construction and algebraic 
curves. In order to obtain nonbinary quantum codes that are constructible in polynomial time and that 
are asymptotically good, we further apply this construction to the tower of function fields that are defined 
in by concatenating Reed-Solomon codes. 

 
Preliminaries 
We provide some definitions and fundamental information regarding quantum codes in this section. First, 
we recall the construction of quantum stabilizer codes using a generalized binary CSS. The nonbinary case 
is then generalized by us. 

 
Definition 2.1 (Calderbank et al.). A binary [[𝑛, 𝑘, 𝑑]]2 quantum error-correcting code is a 2𝑘 -dimensional 
subspace of ℂ2

𝑛   
≃ (ℂ2)⊗𝑛 which can correct [ errors. 

2 

In Calderbank et al., showed how to construct binary quantum error-correcting codes from additive 𝔽4- 
codes. Briefly, the construction is as follows: Let 𝜔 be a primitive element of 𝔽4. Any vector in 𝔽𝑛 can be 
written uniquely as 𝜔𝐚 + �̅� 𝐛 with 𝐚, 𝐛 ∈ 𝔽2 𝑛 . This gives a bijection map 𝜓: 𝔽𝑛  → 𝔽2𝑛 , 𝜓(𝜔𝐚 + �̅� 𝐛) = (𝐚 ∣ 

2 4 2 

𝐛). One interprets 𝔽2 𝑛  as �̅�: = 𝐸/{±𝐼, ±𝑖𝐼}, where 𝐸 is the quantum error group on ℂ2
𝑛 

. Now let 𝐶 be an 

additive 𝔽4-code which is selforthogonal with respect to the trace inner product. Then 𝑆̅:̅ = 𝜓(𝐶) is a 

subgroup  of  �̅�  whose  inverse  image  𝑆̅ ⩽ 𝐸  is  an  abelian  group  acting  on  ℂ2
𝑛 

.  Letting  𝑄  be  any  joint 
eigenspace of the elements of 𝑆̅, we have that 𝑄 is a binary quantum error-correcting code and the 
parameters of 𝑄 can be computed from the parameters of 𝐶. Moreover, one may start with a pair of binary 
linear codes 𝐶1  ⊆ 𝐶2  and form the additive 𝔽4  code 𝐶 : = 𝜔𝐶1  + �̅� 𝐶 ⊥ . Then the above construction yields: 

Theorem 2.2 Suppose 𝐶1 ⊆ 𝐶2 ⊆ 𝔽𝑛 are binary linear codes with dimensions 𝑘1 and 𝑘2, respectively. 
Then there exists a binary [[𝑛, 𝑘2 − 𝑘1, 𝑑]] quantum code, where 𝑑 = min{𝑑(𝐶2 ∖ 𝐶1), 𝑑(𝐶⊥ ∖ 𝐶⊥)}. 

2 1 2 
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In Theorem 2.2, and in the remainder of this paper, the notation 𝑑(𝐴 ∖ 𝐵) means the minimum weight of 
any vector in 𝐴 but not in 𝐵. 
Our next goal is to explore CSS-type constructions for nonbinary quantum codes. We first give analogs of 
additive codes and the quantum error group for the nonbinary case. For the remainder of the paper, we 
write 𝑞 = 𝑝𝑚 , where 𝑝 is an odd prime. 
We call 𝐶 ⊆ 𝔽𝑛 an 𝔽 -linear code if 𝐶 is linear over 𝔽 . This generalizes the notion of additive 𝔽  -codes, 

𝑞 𝑝 𝑝 4 
since being an additive subgroup of 𝔽𝑛 is equivalent to being an 𝔽2-vector space contained in 𝔽𝑛 . Additive 

4 4 

𝔽4-codes which are self-orthogonal under the trace inner product were used to construct stabilizer 
quantum codes. This idea was generalized in to the relationship between self-orthogonal codes over 𝔽𝑞 2 

and 𝑞-ary quantum codes for any odd prime power 𝑞. 
An explicit error basis for 𝑝𝑚 -ary quantum codes is described as follows. Let 𝑇 and 𝑅 be the linear 
operators acting on the 𝑝-dimensional complex space ℂ𝑝 defined by 

𝑇𝑖,𝑗 = 𝛿𝑖,𝑗 −1(mod𝑝) and 𝑅𝑖,𝑗 = 𝜉𝑖 𝛿𝑖,𝑗 

where 𝜉 = 𝑒2𝜋√−1/𝑝 , the indices range from 0 to 𝑝 − 1, and 𝛿𝑖,𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise. The set of 

operators 𝑇𝑖𝑅𝑗 forms an orthogonal basis under the inner product defined by ⟨𝐴, 𝐵⟩ = Tr(𝐴∗𝐵), where 𝐴∗ 
is the Hermitian transpose of 𝐴. 
Fix a basis {𝛾1 , 𝛾2, … , 𝛾𝑚 } for 𝔽𝑝𝑚 over 𝔽𝑝 . For 𝑎, 𝑏 ∈ 𝔽𝑝𝑚 we can write uniquely 

𝑎 = 𝑎1 𝛾1 + 𝑎2 𝛾2 + ⋯ + 𝑎𝑚 𝛾𝑚 , 𝑏 = 𝑏1𝛾1 + 𝑏2 𝛾2 + ⋯ + 𝑏𝑚 𝛾𝑚  

with 𝑎1 , … , 𝑎𝑚 , 𝑏1 , … , 𝑏𝑚 ∈ 𝔽𝑝 . Define 

𝑇𝑎 𝑅𝑏 = (𝑇𝑎1 ⊗ 𝑇𝑎2 ⊗ ⋯ ⊗ 𝑇𝑎𝑚 )(𝑅𝑏1 ⊗ 𝑅𝑏2 ⊗ ⋯ ⊗ 𝑅𝑏𝑚 ) 
The set of operators of the form 𝑇𝑎 𝑅𝑏 , where 𝑎 and 𝑏 ranges over all of 𝔽𝑝𝑚 , forms an orthogonal basis of 

unitary operators acting on the 𝑝𝑚 -dimensional complex vector space ℂ𝑝
𝑚 

. 
Let 𝐚 = (𝑎(1), … , 𝑎(𝑛)), 𝐛 = (𝑏(1), … , 𝑏(𝑛)) ∈ 𝔽𝑛 . As seen above, it is enough to consider the error operators 

given by 

 
The set of operators 

 
𝐸𝐚,𝐛 = 𝑇𝑎(1) 𝑅𝑏(1) ⊗ 𝑇𝑎(2) 𝑅𝑏(2) ⊗ ⋯ ⊗ 𝑇𝑎(𝑛 ) 𝑅𝑏(𝑛 ) 

 

ℰ = {𝜉𝑖 𝐸𝐚,𝐛 ∣ 𝐚, 𝐛 ∈ 𝔽𝑛 and 0 ⩽ 𝑖 ⩽ 𝑝 − 1} 
form an error group of order 𝑝2𝑚𝑛 +1. Quantum stabilizer codes are defined as joint eigenspaces of the 
operators of a commutative subgroup 𝑆̅ of ℰ; see also the appendix of. 
We are now ready to develop the 𝑞-ary CSS construction. We begin with a construction given inthat is 
analogous to the first construction presented in, and then follow the lead of to derive other constructions. 
We note that our 𝑞-ary CSS construction generalizes the 𝑝-ary CSS construction [Theorem 5] as the latter 
construction uses only self-orthogonal codes over 𝔽𝑝 2 where 𝑝 is a prime. The main result is Theorem 2.7, 

which will be used in Section 3 to construct asymptotically good sequences of nonbinary quantum codes. 
As above, we write 𝑞 = 𝑝𝑚 , where 𝑝 is an odd prime. For 𝐚 = (𝑎(1), … , 𝑎(𝑛)), 𝐛 = (𝑏(1), … , 𝑏(𝑛)) ∈ 𝔽𝑛 , let 
𝐚 ⋅ 𝐛 = ∑𝑎(𝑖)𝑏(𝑖) be the usual inner product on 𝔽𝑛 . For (𝐚 ∣ 𝐛), (𝐚′ ∣ 𝐛′ ) ∈ 𝔽2𝑛 , set (𝐚 ∣ 𝐛) ∗ (𝐚′ ∣ 𝐛′ ) = 

𝑞 𝑞 

Tr(𝐚 ⋅ 𝐛′ − 𝐚′ ⋅ 𝐛), where Tr: 𝔽𝑞 → 𝔽𝑝 is the trace map. We see that if 𝑞 = 𝑝 then (𝐚 ∣ 𝐛) ∗ (𝐚′ ∣ 𝐛′ ) = 𝐚 ⋅ 
𝐛′ − 𝐚′ ⋅ 𝐛; this inner product on 𝔽2𝑛 was studied in [16,17]. 

 

Definition 2.3 

A 𝑞-ary [[𝑛, 𝑘, 𝑑]]𝑞 

 
quantum error-correcting code is a 𝑞𝑘 -dimensional subspace of ℂ𝑞

𝑛 
≃ (ℂ𝑞 )⊗𝑛 which 

can correct 
𝑑−1

[ errors. 
2 

 

Proposition 2.4 
Suppose 𝐶 ⊆ 𝔽2𝑛 is an 𝔽 -linear code of length 2𝑛 having 𝑝𝑟 codewords. Let 𝐶⊥∗ be the dual of 𝐶 with 

𝑞 𝑝 

respect to the inner product " ∗ ". If 𝐶 ⊆ 𝐶⊥∗, then there is a 𝑞-ary [[𝑛, 𝑛 − 
𝑟 

, 𝑑]] 
𝑚 𝑞 

quantum code with 

𝑑 = 𝑑(𝐶⊥∗ ∖ 𝐶). 
For 𝐱, 𝐲 ∈ 𝔽𝑛2 , define 𝐱 ∘ 𝐲 = ∑(𝑥 𝑦

𝑞 
− 𝑥

𝑞 
𝑦 ). This map is 𝔽 -bilinear and generalizes the inner product of 

𝑞 𝑖   𝑖 𝑖  𝑖 𝑞 

[16, p. 1879]. Note that for any 𝛾0 ∈ 𝔽𝑞 , there exists 𝛾 ∈ 𝔽𝑞 2 ∖ 𝔽𝑞 satisfying 𝛾𝑞 = 𝛾0 − 𝛾; indeed since the 

trace map Tr: 𝔽𝑞 2 → 𝔽𝑞 is onto and 𝔽𝑞 -linear, we may pick 𝛾 ∈ 𝔽𝑞 2 ∖ 𝔽𝑞 with Tr(𝛾) = 𝛾0. Further, for any 

such 𝛾, {1, 𝛾} is a basis for 𝔽𝑞 2 over 𝔽𝑞 since 𝛾 ∉ 𝔽𝑞 . 
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Lemma 2.5. 
Suppose 𝐷 ⊆ 𝔽𝑛 is an 𝔽 -linear code satisfying 𝐷 ⊆ 𝐷⊥

∘
, where 𝐷⊥∘ is the dual of 𝐷 with respect to " ∘ ". 

𝑞 2 𝑞 
Fix 𝛾0 ∈ 𝔽𝑞 and choose 𝛾 ∈ 𝔽 2 ∖ 𝔽𝑞 satisfying 𝛾𝑞 = 𝛾0 − 𝛾. Define an 𝔽𝑞 -linear map 𝑓: 𝔽𝑛2 → 𝔽2𝑛 by 

𝑞 𝑞 𝑞 
𝑓(𝑥 , … , 𝑥 ) = (𝑥(1), … , 𝑥(1) ∣ 𝑥(2), … , 𝑥(2)), where  𝑥 = 𝑥(1) + 𝛾𝑥(2) for 𝑖 = 1, … , 𝑛. Then (𝐷) ⊆ 𝑓(𝐷⊥∘) = 

1 𝑛 1 𝑛 1 𝑛 𝑖 𝑖 𝑖 

(𝑓(𝐷))⊥∗, where (𝑓(𝐷))⊥∗ is the dual of 𝑓(𝐷) with respect to " ∗ ". 
Proof. 

Clearly, 𝑓(𝐷) ⊆ 𝑓(𝐷⊥
∘
) since 𝐷 ⊆ 𝐷⊥0 . It remains to show that 𝑓(𝐷⊥0 ) = (𝑓(𝐷))⊥∗. To do this, let 𝐱 ∈ 𝐷, 

𝐲 ∈ 𝐷⊥0 . Then  
0 =𝐱 ∘ 𝐲 

=∑ (𝑥 𝑦𝑞 − 𝑥𝑞 𝑦 ) 
𝑖   𝑖 𝑖  𝑖 

=∑ ((𝑥(1) + 𝛾𝑥(2))(𝑦(1) + 𝛾𝑦(2)  
𝑞

 (1) 
+ 𝛾𝑥

(2)   𝑞 (1) + 𝛾𝑦(2))) 
𝑖 𝑖 𝑖 𝑖   ) − (𝑥𝑖 𝑖   ) (𝑦𝑖 𝑖 

=∑ ((𝑥(1) + 𝛾𝑥(2))(𝑦(1) + 𝛾𝑞 𝑦(2)) − (𝑥(1) + 𝛾𝑞 𝑥(2))(𝑦(1) + 𝛾𝑦(2))) 
𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 

=∑ (𝑥(1)𝑦(1) + 𝛾𝑞 𝑥(1)𝑦(2) + 𝛾𝑥(2)𝑦(1) + 𝛾𝑞+1𝑥(2)𝑦(2)) 
𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 

−(𝑥(1)𝑦(1) + 𝛾𝑥(1)𝑦(2) + 𝛾𝑞 𝑥(2)𝑦(1) + 𝛾𝑞+1 𝑥(2)𝑦(2)) 
𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 

=(𝛾𝑞 − 𝛾) ∑ (𝑥(1)𝑦(2) − 𝑥(2)𝑦(1)) 
𝑖 𝑖 𝑖 𝑖 

=(𝛾  − 2𝛾) ∑ (𝑥(1)𝑦(2) − 𝑥(2)𝑦(1)). 
0 

But 𝛾0 − 2𝛾 ∈ 𝔽𝑞 2 ∖ 𝔽𝑞 , and so 

𝑖 𝑖 𝑖 𝑖 

∑ (𝑥(1)𝑦(2) − 𝑥(2)𝑦(1)) = 0 

Therefore 
𝑖 𝑖 𝑖 𝑖 

𝑓(𝐱) ∗ 𝑓(𝐲) = Tr (∑ (𝑥(1)𝑦(2) − 𝑥(2)𝑦(1))) = 0 
𝑖 𝑖 𝑖 𝑖 

This shows 𝑓(𝐷⊥∘) ⊆ (𝑓(𝐷))⊥∗. Since these two codes have the same number of codewords, they must be 
equal. 

 
Proposition 2.6. Let 𝐶1 ⊆ 𝐶2 ⊆ 𝔽𝑛 be 𝔽𝑞 -linear codes, so that 𝐶⊥ ⊆ 𝐶⊥, where 𝐶⊥ is the dual of 𝐶𝑖 under 

𝑞 2 1 𝑖 
the usual inner product. Let 𝜔 be a primitive element of 𝔽  2  and write �̅�  = 𝜔𝑞 . Set 𝐷 = 𝜔𝐶1 + �̅� 𝐶⊥  ⊆ 𝔽  2 . 

𝑞 

Then the dual 𝐷⊥ ∘ of 𝐷 is given by 𝐷⊥∘   = �̅� 𝐶 ⊥ + 𝜔𝐶2 . Hence 𝐷 ⊆ 𝐷⊥∘  and 
2 𝑞 

𝑑(𝐷⊥
∘ 

∖ 𝐷) = min{𝑑(𝐶 ∖ 𝐶 ), 𝑑(𝐶⊥ ∖ 𝐶⊥)} 

Proof. Note first that |𝐷| = 𝑞𝑘1+𝑛−𝑘2 , and so 
2 1 1 2 

|𝐷⊥∘ | = 𝑞2 𝑛 −(𝑛 +𝑘 1−𝑘2)  = 𝑞𝑛 −𝑘 1+𝑘2   = |�̅� 𝐶 ⊥  + 𝜔𝐶2 |. 
Now pick 𝐱 ∈ 𝐶1, 𝐲 ∈ 𝐶⊥, 𝐚 ∈ 𝐶⊥, and 𝐛 ∈ 𝐶2. Then 

2 1 

(𝜔𝐱 + �̅� 𝐲) ∘ (�̅� 𝐚 + 𝜔𝐛) 

= ∑ ((𝜔𝑥𝑖  + �̅� 𝑦𝑖  )(𝜔𝑎𝑖   + �̅� 𝑏𝑖  ) − (�̅� 𝑥𝑖  + 𝜔𝑦𝑖 )(�̅� 𝑎𝑖  + 𝜔𝑏𝑖 )) = (𝜔2 − �̅� 2) (∑ 𝑥𝑖 𝑎𝑖   − ∑ 𝑦𝑖 𝑏𝑖 ) = 0 
since   𝐱 ⋅ 𝐚 = 𝐲 ⋅ 𝐛 = 0. The last sentence   of   the   proposition   follows since   𝐶1 ⊆ 𝐶2, 𝐶⊥ ⊆ 𝐶⊥, and 

2 1 
𝜔𝐶1  ∩ �̅� 𝐶 ⊥  = �̅� 𝐶 ⊥ ∩ 𝜔𝐶2  = {0}. 

2 1 

Next, we give a construction which produces a 𝑞-ary quantum code from any two 𝔽𝑞 -linear codes 
𝐶1 ⊆ 𝐶2 ⊆ 𝔽𝑛 ; for a different approach. This is a 𝑞-ary version of the binary CSS construction as it is also 
based on two linear codes over 𝔽𝑞 , and so it is a generalization of which is based on self-orthogonal codes. 

Theorem 2.7. Let 𝑞 = 𝑝𝑚 , where 𝑝 is an odd prime and 𝑚 ⩾ 1 is an integer. Suppose 𝐶1 ⊆ 𝐶2 ⊆ 𝔽𝑛 are 

𝔽𝑞 -linear codes with dimensions 𝑘1 and 𝑘2, respectively. Then there exists a 𝑞-ary [[𝑛, 𝑘2 − 𝑘1, 𝑑]] 
quantum code, where 𝑑 = min{𝑑(𝐶2 ∖ 𝐶1), 𝑑(𝐶⊥ ∖ 𝐶⊥)}. 

1 2 

Proof. Set  𝐷 = 𝜔𝐶1 + �̅� 𝐶⊥ , as in Proposition 2.6. Then  𝑓(𝐷) ⊆ (𝑓(𝐷))⊥∗   by Proposition 2.6 and Lemma 
2.5. Note that 𝑓(𝐷) is an 𝔽𝑞 -linear code in 𝔽2𝑛 , hence an 𝔽 -linear code with 𝑝𝑟 elements, where 

𝑟 = 𝑚(𝑘1 + 𝑛 − 𝑘2). Our claim now follows by applying Proposition 2.4 by letting 𝐶 = 𝑓(𝐷). 
Example 2.8. Let 𝐶2 be the ternary Golay [11,6,5] code and let 𝐶1 be the subcode of 𝐶2 consisting of 
codewords whose weight is divisible by 3. Then 𝐶1 is a ternary [11,5,6] code and in fact is equal to 𝐶⊥. By 
Theorem 2.7, we obtain a ternary double-error correcting quantum [[11,1,5]]3 code. 

𝑞 
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Good sequences of 𝑞-ary quantum AG codes 
We assume the results from Section II of and use the ideas of Section III of that paper. Note, however, that 
the authors of used only the trivial binary MDS code in the concatenation while we use Reed-Solomon 
codes over 𝔽𝑝 , which allows us to obtain various lengths, dimensions, and minimum distances of 

nonbinary quantum codes. 
We first recall the basics of algebraic geometry codes. For more details. 

 

Definition 3.1.  Let 𝑋 be a smooth, projective,  absolutely irreducible curve over 𝔽𝑞 of  genus 𝑔. Let 
𝑃 = {𝑃1 , … , 𝑃𝑛 } be a set of distinct 𝔽𝑞 -rational points on 𝑋, and let 𝐺 be a divisor on 𝑋 with support 

disjoint from 𝑃. Let 𝑓(𝐺) = {𝑓 ∈ 𝔽𝑞 (𝑋) ∣ (𝑓) + 𝐺 ⩾ 0} 𝖴 {0} be the vector space of rational functions 

associated to 𝐺. The algebraic geometric code 𝐶(𝑋, 𝑃, 𝐺) associated to 𝑋, 𝑃 and 𝐺 is 
𝐶𝑋(𝑃, 𝐺): = {(𝑓(𝑃1 ), … , 𝑓(𝑃𝑛 )) ∣ 𝑓 ∈ 𝑓(𝐺)}. 

 

Theorem 3.2. Let 𝑋, 𝑃 and 𝐺 be as in Definition 3.1 with 𝑔 the genus of 𝑋 and 𝑛 the number of points in 

𝑃. Assume 2𝑔 − 2 < 𝑑𝑒𝑔𝐺 < 𝑛. Then 𝐶𝑋 (𝑃, 𝐺) is a linear code over 𝔽𝑞    with length 𝑛, dimension 
𝑘 = deg𝐺 + 1 − 𝑔 and minimum distance 𝑑 ⩾ 𝑛 − deg𝐺. Further, the minimum distance of the dual code 
𝐶𝑋(𝑃, 𝐺) is at least deg𝐺 − 2𝑔 + 2. 
Algebraic geometry codes were first introduced by Goppa in 1977. Only a few years later, Tsfasman, et al.  
used modular curves to show that, for 𝑞 ⩾ 49 a square, there exist sequences of algebraic geometry codes 
over 𝔽𝑞 which are asymptotically better than the Gilbert-Varshamov bound on a certain interval of 
relative minimum distance. A few such sequences are explicitly known (or at least the curves on which 
they are based are explicitly known); we will use a sequence of curves given by Garcia and Stichtenoth to 
construct asymptotically good nonbinary quantum error-correcting codes. 
For our construction, we need only one-point codes, that is, algebraic geometry codes where the divisor 𝐺 
is a multiple of some chosen 𝔽𝑞 -rational point 𝑃0 and the set 𝑃 consists of all the other 𝔽𝑞 -rational points 

on 𝑋. Set = 𝑁(𝑋): = |𝑃| = #𝑋(𝔽𝑞 ) − 1. Pick integers 𝑚1 and 𝑚2 with 2𝑔 − 2 < 𝑚1 < 𝑚2 < 𝑁. We 
consider the codes 𝑇𝑗 : = 𝐶𝑋(𝑃, 𝑚𝑗 𝑃0 ) for 𝑗 = 1,2. Then 𝑇1 ⊂ 𝑇2 and, from Theorem 3.2, we see that 𝑇𝑗 is an 

[𝑁, 𝑚𝑗 − 𝑔 + 1, ⩾ 𝑁 − 𝑚𝑗 ] code over 𝔽𝑞 and the dual 𝑇𝑗
⊥ of 𝑇𝑗 is an [𝑁, 𝑁 − 𝑚𝑗 + 𝑔 − 1, ⩾ 𝑚𝑗 − 2𝑔 + 2] 

code over 𝔽𝑞 . 
As in, we use concatenation to obtain 𝔽𝑝 -linear codes 𝐶1 and 𝐶2 from 𝑇1 and 𝑇2 . As we will be working 
with fields of square order, we will now switch notation so that our ground field is 𝔽𝑞 2 , where 𝑞 = 𝑝𝑡 . We 
wish to have an 𝔽𝑝 -linear map 𝜋⋆: 𝔽 2 → 𝔽2𝑡+𝑟 , for some nonnegative integer 𝑟, such that the image 𝐶⋆ of 

𝑞 𝑝 

𝜋⋆ is a [ 2𝑡 + 𝑟, 2𝑡, 𝑟 + 1] Reed-Solomon code over 𝔽𝑝 . Since Reed-Solomon codes of over 𝔽𝑝 exist only for 
lengths at most 𝑝 + 1, we must have 

2𝑡 + 𝑟 ⩽ 𝑝 + 1, i.e., 0 ⩽ 𝑟 ⩽ 𝑝 − 2𝑡 + 1 
Define 𝜋: 𝔽𝑁   → 𝔽𝑁(2𝑡+𝑟) by 𝜋((𝑥 , … , 𝑥 )) = (𝜋 (𝑥 ), … , 𝜋 (𝑥 )). Then we have 

𝑞 2 𝑝 1 𝑁 *     1 ⋆     𝑁 

𝐶1: = 𝜋(𝑇1 ) ⊂ 𝜋(𝑇2 ) =: 𝐶2 

Thus 𝐶𝑗 , (𝑗 = 1,2) is an 𝔽𝑝 -linear [(2𝑡 + 𝑟)𝑁, 2𝑡(𝑚𝑗 − 𝑔 + 1), ⩾ (𝑟 + 1)(𝑁 − 𝑚𝑗 )] code (see [10] or [8]). 
The dual of 𝐶𝑗 (𝑗 = 1,2) is 𝐶⊥ = 𝑆̅ ⊕ (𝜋′ (𝑇⊥)), where 𝑆̅ is the direct sum of 𝑁 copies of 𝐶⊥ and 𝜋′ is the 𝔽 - 

𝑗 𝑗 ⋆ 𝑞 
linear injective "dual basis" map, as. For any vector 𝐱 ∈ 𝐶⊥ ∖ 𝐶⊥, we have wt(𝐱) ⩾ 𝑚1 − 2𝑔 + 2, just as in 

1 2 

the binary case (see proof of Theorem 1.2). 
 

Proposition 3.3. With notation as above, we get a p-ary quantum [[𝑛, 𝑘, 𝑑]]𝑝 code 𝐵 = 𝐵(𝑋) with 
n = (2𝑡 + 𝑟)𝑁 
𝑘 = 2𝑡(𝑚2 − 𝑚1) 
𝑑 ⩾ min{(𝑟 + 1)(𝑁 − 𝑚2), 𝑚1 − 2𝑔 + 2} 
Example 3.4. Let 𝑋 be the Hermitian curve defined by 𝑦𝑞 + 𝑦 = 𝑥𝑞+1 over 𝔽𝑞 2 with 𝑞 = 𝑝𝑡 ; this is the 

base level of the Garcia-Stichtenoth tower. There are 𝑞3 + 1𝔽𝑞 2 -rational points on 𝑋, and the genus of 𝑋 is 

𝑞(𝑞 − 1)/2. We choose integers 𝑚1 and 𝑚2 with 𝑞2 − 𝑞 − 2 = 2𝑔 − 2 < 𝑚1 < 𝑚2 < 𝑁 = 𝑞3 and obtain 

𝔽𝑞 2 -linear codes 𝑇𝑗 , 𝑗 = 1,2, with parameters [𝑞3, 𝑚𝑗 − 
𝑞 (𝑞−1) 

 

 

2 
+ 1, ⩾ 𝑞3 − 𝑚𝑗 ]. For any integer 𝑟 with 

0 ⩽ 𝑟 ⩽ 𝑝 + 1 − 2𝑡 as above, we get a 𝑝-ary quantum [[𝑛, 𝑘, 𝑑]]𝑝 code 𝐵 with 
𝑛 = (2𝑡 + 𝑟)𝑞3 
𝑘 = 2𝑡(𝑚2 − 𝑚1) 

𝑑 ⩾ min{(𝑟 + 1)(𝑞3 − 𝑚2), 𝑚1 − 𝑞(𝑞 − 1) + 2} 
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As a final step before we consider the asymptotic behavior of our quantum codes, we make a few 
remarks. Let 𝑋 be a curve of genus 𝑔 with 𝑁 + 1 rational points. If we choose integers 𝑚1 and 𝑚2 with 
2𝑔 − 2 < 𝑚1 < 𝑚2 < 𝑁, then 
𝑃: = 𝑚2 − 𝑚1 satisfies 0 < 𝑙 ⩽ 𝑁 − 2𝑔. Conversely, given an integer 𝑃 satisfying 0 < 𝑙 ⩽ 𝑁 − 2𝑔, set 

(𝑟 + 1)𝑁 + 2𝑔 + 𝑃 − 2 

 
and 𝑚1  = 𝑚2 − 𝑃. Then since 

𝑚2 =   ] 
𝑟 + 2 

𝑚1 − (2𝑔 − 2)=   
(𝑟 + 1)𝑁 + 2𝑔 + 𝑃 − 2 

] − 𝑃 − (2𝑔 − 2) 
𝑟 + 2 

(𝑟 + 1)𝑁 + 2𝑔 + 𝑃 − 2 
⩾ 

𝑟 + 2 

𝑟 + 1 
− 

𝑟 + 2 
− 𝑃 − (2𝑔 − 2) 

𝑟 + 1 
= 

𝑟 + 2 
(𝑁 + 1 − 2𝑔 − 𝑃) 

 
 

and 

> 0 
𝑚2 − 𝑚1 = 𝑃 

> 0 
 

(𝑟 + 1)𝑁 + 2𝑔 + 𝑃 − 2 
𝑁 − 𝑚2⩾ 𝑁 −  

 

𝑟 + 2 
𝑁 − 2𝑔 − 𝑃 + 2 

= 
𝑟 + 2 

2 
⩾ 

𝑟 + 2 
> 0 

we have 2𝑔 − 2 < 𝑚1 < 𝑚2 < 𝑁. Also, since 
(𝑟 + 1)(𝑁 − 𝑚2)= (𝑟 + 1)𝑁 − (𝑟 + 2)𝑚2 + 𝑚2 

⩾ (𝑟 + 1)𝑁 − ((𝑟 + 1)𝑁 + 2𝑔 + 𝑃 − 2) + 𝑚2 

= −2𝑔 − 𝑘 + 𝑃 + 𝑚2 

= 𝑚1 − 𝑚2 − 2𝑔 + 2 + 𝑚2 

= 𝑚1 − (2𝑔 − 2) 
𝑟 + 1 

 
we have 

⩾ 
𝑟 + 2 

(𝑁 − 2𝑔 − 𝑃 + 1) 

 

Proposition 3.5. Let 𝑋 be a curve of genus 𝑔 with 𝑁 rational points. For any integers 𝑃 and 𝑟 with 
0 < 𝑙 ⩽ 𝑁 − 2𝑔 and 0 ⩽ 𝑟 ⩽ 𝑝 + 1 − 2𝑡, there is a 𝑝-ary quantum [[𝑛, 𝑘, 𝑑]]𝑝 code 𝐵 = 𝐵(𝑋) with 
parameters 

𝑛 = (2𝑡 + 𝑟)𝑁 
𝑘 = 2𝑡𝑃 

𝑟 + 1 
𝑑 ⩾  

 

𝑟 + 2 (𝑁 − 2𝑔 − 𝑃 + 1) 

Now let 𝐗 = {𝑋} be a Garcia-Stichtenoth tower of polynomially constructible curves over 𝔽𝑞 2 where 
𝑞 = 𝑝𝑡 having increasing genus 𝑔 = 𝑔(𝑋) and attaining the Drinfeld-Vladut bound, i.e., satisfying 

#𝑋(𝔽𝑞 2 ) 
lim sup 

𝑋∈𝐗 𝑔 
= 𝑞 − 1 

Then for any sequence of integers {𝑃 = 𝑃(𝑋) ∣ 𝑋 ∈ 𝐗} with 0 < 𝑙 ⩽ 𝑁 − 2𝑔 for each 𝑋, we have 
0 < 𝑙𝑖𝑚sup 𝑃 ⩽ 1 − 

2
 

 

. Indeed, by choosing the values of 𝑃 appropriately, we can have limsup 𝑃 
=

 
 

𝑋∈𝐗 𝑁 
 

𝑞−1 𝑋∈𝐗 𝑁 

𝜆 for any 𝜆 with 0 < 𝜆 ⩽ 1 −   
2   

. 
𝑞−1 

We put 
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𝑋∈𝐗 

2𝑡𝑃 
𝑅: = lim sup 

(2𝑡 + 𝑟)𝑁
 

2𝑡 
= 𝜆 

2𝑡 + 𝑟 
𝑟+1 (𝑁 − 2𝑔 − 𝑃 + 1) 

𝛿: = lim sup 𝑟+2  
𝑋∈𝐗 

𝑟 + 1 
= 

(2𝑡 + 𝑟)𝑁 
2 

(1 − 

 

− 𝜆) 
(𝑟 + 2)(2𝑡 + 𝑟) 𝑞 − 1 

Note that for a sequence of 𝑝-ary [[𝑛(𝐵), 𝑘(𝐵), 𝑑(𝐵)]]𝑝 quantum codes 𝐁 = {𝐵 = 𝐵(𝑋)} coming as in 

Proposition 3.5 from the Garcia-Stichtenoth tower, we have 

lim sup 
𝐵∈𝐁  

𝑘(𝐵) 
 

 

𝑛(𝐵) 
= 𝑅 and lim sup 

𝐵∈𝐁  

𝑑(𝐵) 
 

 

𝑛(𝐵) 
⩾ 𝛿 

To get an expression for 𝑅 in terms of 𝛿, we solve for 𝜆 in terms of 𝛿 and substitute, yielding 
2𝑡 2 2𝑡(𝑟 + 2) 

𝑅𝑝 (𝛿): = 𝑅 = 
2𝑡 + 𝑟 

(1 − 
𝑞 − 1

) − 

In order to have 𝑅 > 0, we need 𝛿 < 𝛿(𝑝, 𝑟, 𝑡), where 
(𝑟 + 1)(𝑝𝑡 − 3) 

𝛿 
𝑟 + 1 

 
We have proved the following. 

𝛿(𝑝, 𝑟, 𝑡) = 
(𝑟 + 2)(2𝑡 + 𝑟)(𝑝𝑡 − 1) 

 

Theorem 3.6. Let 𝑝 be any odd prime number. Suppose that 𝑡 ⩾ 1 and 𝑟 ⩾ 0 are integers satisfying 
2𝑡 + 𝑟 ⩽ 𝑝 + 1. Let 𝛿(𝑝, 𝑟, 𝑡) be as above. Then for any 𝛿 with 0 < 𝛿 < 𝛿(𝑝, 𝑟, 𝑡) < 

1
, there exist 

4 

polynomially constructible families of p-ary quantum codes with 𝑛 → ∞ and asymptotic parameters at 

least (𝛿, 𝑅𝑝 (𝛿)), where 

𝑅𝑝 (𝛿) = 
(2𝑡)(𝑟 + 2) 

(𝛿(𝑝, 𝑟, 𝑡) − 𝛿) 
𝑟 + 1 

In Figs. 1-3, we plot some of our bounds (𝛿, 𝑅𝑝 (𝛿)) and compare them with Ashikhmin and Knill's 

nonbinary quantum Gilbert-Varshamov (qGV) bound, which is nonconstructive. We note that in the case 
of the binary quantum codes, there is a large information rate gap between the nonconstructive binary 
quantum Gilbert-Varshamov bound and the constructive bounds (for example, gap ≈ 0.5 at 𝛿 = 0.06 ), 
and the nonzero information rate from the constructive bound is possible up to 𝛿 ≈ 0.07. However our 
53-ary quantum codes as seen in Fig. 3 have a small information rate gap ≈ 0.1 at 𝛿 = 0.06 when 𝑟 = 0 
and 𝑡 = 1, and can have nonzero information rate up to 𝛿 ≈ 0.24. As 𝑝 increases, the information rate gap 
is getting smaller although our bounds (𝛿, 𝑅𝑝 (𝛿)) in Theorem 3.6 are under the nonbinary qGV bound as 

the 𝛿-intercept 𝛿(𝑝, 𝑟, 𝑡) of the graph is < 
1
. 

4 

Remark 3.7. The case when 𝑝 = 2 was discussed in [7]. In this case we require that 𝑡 ⩾ 3 is an integer 
and 𝑟 = 0 or 1. Then plugging in 𝑝 = 2 and 𝑟 = 1 into 𝛿(𝑝, 𝑟, 𝑡) in Theorem 3.6 gives 

2(2𝑡 − 3) 
𝛿(2,1, 𝑡) = 𝛿𝑡= 

3(2𝑡 + 1)(2𝑡 − 1) 

𝑅2(𝛿)= 3𝑡(𝛿𝑡 − 𝛿) 
which is Theorem 1.2. 
Using the same ideas, we can construct 𝑝𝑡 -ary quantum codes. 

 

Fig 1. Asymptotically good sequences of 𝑝-ary quantum codes where 𝑝 = 5 with 𝑟 = 0 and 𝑡 = 1,2, or 
with 𝑟 = 1 and 𝑡 = 1. 
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Fig 2. Asymptotically good sequences of 𝑝-ary quantum codes where 𝑝 = 7 with 𝑟 = 0 and 𝑡 = 1,2, or 

with 𝑟 = 1 and 𝑡 = 1. 
 

Theorem 3.8. Let 𝑝 be an odd prime, and let 𝑡 ⩾ 1 and 𝑟 ⩾ 1 be integers with 𝑟 ⩽ 𝑝𝑡 − 1. Set 
(𝑟 + 1)(𝑝𝑡 − 3) 

𝛿(𝑝, 𝑟, 𝑡) = 
(𝑟 + 2)2(𝑝𝑡 − 1) 

 

Fig 3. Asymptotically good sequences of 𝑝-ary quantum codes where 𝑝 = 53 with 𝑟 = 0 and 𝑡 = 1,2, or 
with 𝑟 = 1 and 𝑡 = 1. 

 

Then for any 𝛿 with 0 < 𝛿 < 𝛿(𝑝, 𝑟, 𝑡), there exist polynomially constructible families of 𝑝𝑡 -ary quantum 

codes with 𝑛 → ∞ and asymptotic parameters at least (𝛿, 𝑅𝑝 𝑡 (𝛿)), where 
2(𝑟 + 2) 

𝑅𝑝 𝑡 (𝛿) = (𝛿(𝑝, 𝑟, 𝑡) − 𝛿) 
𝑟 + 1 

Proof. We proceed as in the proof of Theorem 3.6. For any integer 𝑟 with 1 ⩽ 𝑟 ⩽ 𝑝𝑡 − 1, we have a 
[2 + 𝑟, 2, 𝑟 + 1] Reed-Solomon code 𝐶⋆ over 𝔽 𝑡 . Let 𝜋⋆: 𝔽 2𝑡 → 𝔽2+𝑟 be an 𝔽 𝑡 -linear injective map with 

𝑝 𝑝 𝑝 𝑡 𝑝 

𝜋⋆(𝔽𝑝 2𝑡 ) = 𝐶⋆. The code 𝐶𝑗 will be an 𝔽𝑝 𝑡 -linear [(2 + 𝑟)𝑁, 2(𝑚𝑗 − 𝑔 + 1), ⩾ (𝑟 + 1)(𝑁 − 𝑚𝑗 )] code with 
𝐶⊥ = 𝑆̅ + 𝜋′ (𝑇⊥), where 𝑆̅ is the direct sum of 𝑁 copies of 𝐶⊥ and 𝜋′ is the dual basis map corresponding 

𝑗 𝑗 ⋆ 

to 𝜋. Applying the CSS construction, we get a 𝑝𝑡 -ary quantum code 𝐵 = 𝐵(𝑋) with parameters 
𝑟 + 1 

[[(2 + 𝑟)𝑁, 2𝑙, ⩾ 𝑑 ⩾  
 

𝑟 + 2 
(𝑁 − 2𝑔 − 𝑙 + 1)]]  

𝑝 𝑡 

where 𝑙 is any integer satisfying 0 < 𝑙 ⩽ 𝑁 − 2𝑔 as before. 
Now set 
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𝑅𝑝 𝑡 : = 𝑅 = limsup 

2𝑙 2 
= 𝜆, 

 

𝛿 = limsup 

𝑋∈𝐗    𝐗 

𝑑 
(2 + 𝑟)𝑁 

𝑟 + 1 
= 

2 + 𝑟 
2 

2 (1 − 𝑡 

 

− 𝜆) 
𝑋∈𝐗 (2 + 𝑟)𝑁 (𝑟 + 2) 𝑝 − 1 

and write 𝑅𝑝 𝑡 in terms of 𝛿 to obtain the result. 

CONCLUSION 
An independent proof of [Theorem 3] for a generalized CSS construction for nonbinary quantum error- 
correcting codes is presented in this article. We are able to acquire a variety of parameters for nonbinary 
quantum codes by utilizing this construction and algebraic curves. We have, in particular, constructed 
families of asymptotically good nonbinary quantum codes by making use of a Garcia-Stichtenoth tower of 
function fields. It should be noted that the algorithm for decoding the algebraic geometry codes that 
correspond to our quantum codes is connected to the process of decoding them. 
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