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Analysing the conduction of heat in

porous medium via Caputo fractional

operator with Sumudu transform

Lalit Mohana,b, Amit Prakasha,∗
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Corresponding author:amitmath@nitkkr.ac.in(A. Prakash)

Abstract. In this article, we analyse the fractional Cattaneo heat equa-
tion for studying the conduction of heat in porous medium. This equation
is also used in studying extended irreversible thermodynamics, material,
plasma, cosmological model, computational biology, and diffusion the-
ory in crystalline solids. The Sumudu adomian decomposition technique,
which is combination of Sumudu transform and a numerical technique,
is applied for getting numerical solution. The existence and uniqueness
is analysed by using the fixed point theorem and the highest error of the
designed technique is also analysed. Finally, the accuracy of the designed
numerical method is presented by solving two examples and the findings
are compared with the existing method.

Keywords: Fractional Cattaneo heat equation (FCHE), Caputo deriva-
tive, Sumudu transform, Existence and Uniqueness Analysis, Error Anal-
ysis.

1 Introduction

The Fractional calculus (FC) has developed into a vital tool for mod-
elling and solving the events in engineering and sciences. It is utilised
in many different scientific fields. Additionally, because of its abil-
ity to be remembered and passed on, it is quite useful in replicat-
ing and understanding natural occurrences. The fractional Caputo
derivative [1] is one of the best fractional derivatives available in
the literature. Various fractional mathematical models were explored
and examined by numerous researchers, like the fractional diffusion-
wave equation studied in [2], the fractional Brain tumour model [3],
Whitham–Broer–Kaup equation with fractional order is presented
in [4], the problem of oil spill is analysed in [5], the existence and
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uniqueness for fractional Cauchy reaction diffusion equations is anal-
ysed in [6], the time fractional wave equations is studied in [7], the
2019-nCOV outbreaks is studied in [8], the COVID-19 model is anal-
ysed through singular and non-singular fractional operators in [9],
the fractional hosta parasitoid population dynamical model is stud-
ied in [10], the fractional model for population dynamics of two in-
teracting species is studied in [11], the fractional Riccati differential
equation is studied in [12], the Coupled Schrodinger-KdV equation is
analysed with Caputo-Katugampola Type Memory in [13], the SIR
model is studied via Morgan-Voyce series in [14], the singularly per-
turbed Volterra integro-differential equations with delay is solved in
[15] and the generalized equal width wave equation is investigated
in [16].
There are many numerical techniques available in the literature for
solving fractional order differential equations such as; the generalized
Adams-Bashforth-Moultan method [17], the optimal control tech-
nique [18], the Taylor series expansion method [19], the Haar wavelet
method [20], the homotopy perturbation Sumudu transform method
[21] and the sine-gordon expansion method [22].
The fractional diffusion models have been used to define anoma-
lous diffusion in a variety of ways [23,24,25,26]. As a result, antic-
ipating heat transport behaviour has caught scientists’ attention.
The heat conduction model based of Fouriera’s law is sufficient for
the majority of applications. However, this model violates the rules
of physics since the thermal disturbances propagate at an infinite
pace [27,28,29]. For instance, fractional order derivatives describe
the Fick’s laws of fractional order, which are available. This method
is used to produce the Cattaneo equation, which is used to explain
fractional order diffusion models and heat and mass transport [30].
The law of heat condition was given by Fourier [31], first time in
1822. Even though it was simply a hypothesis law, it gave the two
centuries of thermal conduction study that followed a framework
and made it possible to characterise heat transport routes. Fourier’s
law was updated by Cattaneo [32] in 1948 by include the idea of re-
laxation time. Using Oldroyd’s upper convected derivative [33] and
modifying the rule given by the Cattaneo in 2009, Christov [34] cre-
ated an equation with a only one parameter of temperature.
We consider the following fractional Cattaneo heat equation (FCHE)
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c
0D

α
t u(x, y, t) + βut(x, y, t)−∆u(x, y, t) = f(x, y, t),

(x, y, t) ∈ Ω × (0, T ]
(1)

with

u(x, y, 0) = g(x, y),
∂u(x, y, 0)

∂t
= φ(x, y), (x, y) ∈ Ω (2)

where u(x, y, t) is the heat distribution function, β is a constant,
f(x, y, t) is the given source term, Ω is bounded domain , c

0D
α
t is the

Caputo fractional operator of order α with 1 < α ≤ 2, g(x, y), and
φ(x, y) are given smooth functions.
The main aim of this research is to examine the FCHE with Ca-
puto fractional operator. The Sumudu adomian decomposition tech-
nique (SADT) is used to get numerical solution. The existence and
uniqueness is analysed by using the fixed point theorem, also the
maximum error of the SADT is investigated. The uniqueness of this
study is that it provides an accurate prediction regarding the method
of conduction of heat for addressing thermo-elastic issues in porous
medium. The main achievement of this work is to design a very ef-
fective technique for solution of FCHE that allows for the detailed
investigation of the heat conduction process in porous media. This
study’s findings will be useful for studying extended irreversible ther-
modynamics, material, plasma, cosmological model, computational
biology, and diffusion theory in crystalline solids.

2 Basic definitions of Fractional Calculus

Def. 2.1. [1]The Caputo derivative of y(t) is given by

Dαy(t) = Im−αDmy(t) =
1

Γ (m− α)

∫ t

0

(t− f)m−α−1ym(f)df

where m− 1 < α ≤ m.
Def. 2.2. [35] The Sumudu transform (ST) of a given function y(t)
is defined as

ST [y(t)] =

∫ ∞

0

e−ty(vt)dt, v ∈ (−t1, t2) .
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Def. 2.3. [35] The ST of the Caputo fractional order derivative is
given by

ST [Dα
t y(t)] = v−αST [y(t)]−

m−1∑
k=0

v(−α+k)y(k)(0)

Theorem 2.1. [1] If c
0D

α
t y(t) = e(t), then its unique solution is

defined as

y(t) =
1

Γ (α)

∫ t

0

(t− f)α−1e(f)df

where 0 < α ≤ 1.

3 Existence and Uniqueness Analysis of the
FCHE

The FCHE is given by equation (1) can be written in the form

c
0D

α
t = ψ(x, y, t, u), (3)

where ψ(x, y, t, u) = ∆u(x, y, t)− βut(x, y, t) + f(x, y, t).
Equation (3) can be converted into the Voltera type integral equation
using theorem (2.1):

u(x, y, t)− u(x, y, 0) =
1

Γ (α)

∫ t

0

(t− s)α−1ψ(x, y, s, u)ds. (4)

Next, we have to prove that ψ(x, y, t, u) satisfy Lipschitz condition.
Theorem 3.1. [3] The function ψ(x, y, t, u) in the given Voltera
equation satisfies both the contraction if 0 < η ≤ 1, where η =
δ2 − βµ and the Lipschitz condition.
Proof: Let u(x, y, t) is bounded. So, we have

∥ψ(x, y, t, u)− ψ(x, y, t, ρ)∥ = ||uxx(x, y, t)− βut(x, y, t)

+ f(x, y, t)− ρxx(x, y, t)

+ βρt(x, y, t)− f(x, y, t)||
= ∥(uxx − ρxx)− β(ut − ρt)∥,
≤ δ2∥(u− ρ)∥ − βµ∥(u− ρ)∥
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∥ψ(x, y, t, u)− ψ(x, y, t, ρ)∥ ≤ (δ2 − βµ)∥(u− ρ)∥ (5)

Letting η = (δ2 − βµ), then

∥ψ(x, y, t, u)− ψ(x, y, t, ρ)∥ ≤ η∥(u− ρ)∥

Thus, ψ(x, y, t, u) satisfies Lipschitz and contraction condition if 0 <
η ≤ 1. So, the iterative formula for the existence of above condition
is represented as

un+1(x, y, t) =
1

Γ (α)

∫ t

0

(t− s)α−1ψ(x, y, s, un)ds, (6)

with initial condition as u(x, y, 0) = u(x, y, t0).
The two consecutive terms are differ by

ψn(x, y, t) = un(x, y, t)− un+1(x, y, t)

=
1

Γ (α)

∫ t

0

(t− s)α−1{ψ(x, y, s, un−1)− ψ(x, y, t, un−2)}ds

(7)

It can be observed that

un(x, y, t) =
n∑

i=0

ψi(x, y, t) (8)

so, from equation (7), we have

∥ψn(x, y, t)∥ = ∥un(x, y, t)− un−1(x, y, t)∥. (9)

Using Triangular inequality, equation (6) becomes

∥ψn(x, y, t)∥ ≤ 1

Γ (α)
η∥

∫ t

0

(t− s)α−1ψn−1(x, y, s)ds∥. (10)

Theorem 3.2. [3] The solution of the equation (3) exist if there
exists a t0 which satisfy

1

Γ (α)
ηtα0 ≤ 1.
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Proof: Let u(x, y, t) is be bounded and Lipschitz function then using
equation (10), we get

∥ψn(x, y, t)∥ ≤ ∥un(x, y, t)∥
[

1

Γ (α)
η.tα

]n
. (11)

Thus, it is established that the given solution exists and is continu-
ous.

u(x, y, t)− u(x, y, 0) = un(x, y, t)− γn(x, y, t), (12)

here, we consider that

∥γn(x, y, t)∥ = ∥ 1

Γ (α)

∫ t

0

(t− s)α−1{ψ(x, y, s, un)− ψ(x, y, t, un−1)}ds∥,

≤ 1

Γ (α)
∥
∫ t

0

(t− s)α−1{ψ(x, y, s, un)− ψ(x, y, t, un−1)}ds∥,

≤ 1

Γ (α)
η∥un(x, y, t)− un−1(x, y, t)t∥.

In the same way at t0, we have

∥γn(x, y, t)∥ ≤
[

1

Γ (α)
tα0

]n+1

ηn+1M. (13)

As n→ ∞, we can clearly see that ∥γn(x, u, t)∥ → 0.
Theorem 3.3. [3] The FCHE will have a unique solution if the
following condition holds(

1− 1

Γ (α)
ηtα

)
> 0.

Proof: Let w(x, y, t) is another solution of (3), then

∥u(x, y, t)− w(x, y, t)∥ = ∥ 1

Γ (α)

∫ t

0

(t− s)α−1(ψ(x, y, s, u)

− ψ(x, y, t, w))ds∥,

∥u(x, y, t)− w(x, y, t)∥ ≤ 1

Γ (α)
η∥u(x, y, t)− w(x, y, t)∥ (14)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

6 Mohan et al 1-20



Title Suppressed Due to Excessive Length 7

Now, on simplifying (14), we have

∥u(x, y, t)− w(x, y, t)∥
(
1− 1

Γ (α)
ηtα

)
≤ 0

hence, if (
1− 1

Γ (α)
ηtα

)
> 0. (15)

then, u(x, y, t) = w(x, y, t).
Hence, the FCHE possess a unique solution.

4 Application of the designed technique to the
FCHE

In this part of the article, we apply the proposed technique to the
FCHE and we consider the following FCHE

c
0D

α
0 u(x, y, t) + βut(x, y, t)−∆u(x, y, t) = f(x, y, t) (16)

where (x, y, t) ∈ Ω(0, T ], 1 < α ≤ 2, with

u(x, y, 0) = g(x, y),
∂u(x, y, 0)

∂t
= ϕ(x, y), (x, y) ∈ Ω. (17)

Now, we apply ST on equation (16), we have

ST

[
c
0D

α
t u(x, y, t)

]
= ST [∆u(x, y, t)− βut(x, y, t) + f(x, y, t)].

From definition (2.3) and equation (17), we have

1

vα
ST [u(x, y, t)]− 1

vα
u(x, y, 0)− 1

vα−1

∂u(x, y, θ)

∂t
= ST [∆u(x, y, t)

− βut(x, y, t) + f(x, y, t)]

1

vα
ST [u(x, y, t)] =

1

vα
u(x, y, 0)+

1

vα−1

∂u(x, y, θ)

∂t
+ ST [∆u(x, y, t)

− βut(x, y, t) + f(x, y, t)]
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ST [u(x, y, t)] = g(x, y) + vφ(x, y) + vαST [∆u(x, y, t)− βut(x, y, t)

+ f(x, y, t)].

Applying ST inverse on above equation, we have

u(x, y, t) = g(x, y) + tφ(x, y, t) + ST−1

{
vα[ST∆u(x, y, t)

− βut(x, y, t) + f(x, y, t)]

}
.

(18)

Applying the Adomian decomposition method to equation (18), so
we take

u(x, y, t) =
∞∑
n=0

pnu(x, y, t).

Hence, we get

∞∑
n=0

pnu(x, y, t) = g(x, y) + tφ(x, y) + ST−1

{
vαST

[ ∞∑
n=0

pn

∆un(x, y, t)− β
∞∑
n=0

pn(un)t(x, y, t) + f(x, y, t)

]}
.

(19)

Comparing the coefficient of like powers of p of equation (19), we
have

u0(x, y, t) = g(x, y) + tφ(x, y), (20)

u1(x, y, t) = ST−1{vαST [∆u0(x, y, t)− β(u0)t(x, y, t) + f(x, y, t)]},
(21)

u2(x, y, t) = ST−1{vαST [∆u1(x, y, t)− β(u1)t(x, y, t) + f(x, y, t)]},
(22)

un(x, y, t) = ST−1(vαST [∆un−1(x, y, t)− β(un−1)t(x, y, t)

+ f(x, y, t)]),
(23)
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The final solution is given by

u(x, y, t) = lim
k→∞

k∑
n=0

un(x, y, t). (24)

5 Error Analysis of the SADT

The maximum error of the SADT is examined in this section.
Theorem 5.1. [3] If ∃, 0 < ϵ < 1 such that ∥un+1(x, y, t)∥ ≤
ϵ∥un(x, y, t)∥, for all n and if the series

∑r
n=0 un(x, y, t) is the ap-

proximate solution u(x, y, t), then the maximum error is given by

∥u(x, y, t)−
r∑

n=0

un(x, y, t)∥ ≤ ϵr+1

(1− ϵ)
∥u0(x, y, t)∥.

Proof: We have

∥u(x, y, t)−
r∑

n=0

un(x, y, t)∥ = ∥
∞∑

n=r+1

un(x, y, t)∥

≤
∞∑

n=r+1

∥un(x, y, t)∥

≤
∞∑

n=r+1

ϵm∥u0(x, y, t)∥

≤ (ϵ)r+1[1 + (ϵ)1 + (ϵ)2 + · · · ]∥u0(x, y, t)∥

≤ ϵr+1

1− ϵ
∥u0(x, y, t)∥.

Hence proved.

6 Numerical Simulation

Two examples of the FCHE have been solve in this section to validate
the designed technique
Application 6.1. Consider FCHE given in the article [36]

c
0D

α
t u(x, y, t)+ut(x, y, t)−∆u(x, y, t) =

(
6t3−α

Γ (4− α)
− 2t3 + 3t2

)
ex+y

(25)
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(x, y, t) ∈ Ω × (0, T ], and the analytical solution of equation (25) at
α = 2 is u(x, y, t) = t3ex+y.

Solution. Here β = 1, f(x, y, t) =
(

6t3−α

Γ (4−α)
− 2t3 + 3t2

)
ex+y, and

from the analytical solution we can find the initial conditions. Now,
we apply SADT to equation (25) so, we get
u0(x, y, t) = 0,

u1(x, y, t) = ex+y
[
6 t3

Γ (4)
− 2 tα+3

Γ (α+4)
+ 3 tα+2

Γ (α+3)

]
,

u2(x, y, t) = ex+y

[
6
t3

Γ (4)
− 3

2

tα+3

Γ (α + 4)
+

9

4

tα+2

Γ (α + 3)
− 4

t2α+3

Γ (2α + 4)

+
3(α + 2)

(α + 3)

t2α+1

Γ (2α + 2)
+

(9α + 24)

(α + 3)

t2α+2

Γ (2α + 3)

]
,

u3(x, y, t) = ex+y

[
6
t3

Γ (4)
− 42

tα+3

Γ (α + 4)
+ 6

tα+2

Γ (α + 3)
− 3

t2α+3

Γ (2α + 4)

−8
t3α+3

Γ (3α + 4)
+

(9α + 18)

(4α + 12)

t2α+1

Γ (2α + 2)
+

(21α + 15)

(2α + 8)

t2α+2

Γ (2α + 3)

+

(
18α + 48

α + 3
+

8α + 12

2α + 4

)
t3α+2

Γ (3α + 3)
−3(2α + 1)(α + 2)

(2α + 2)(α + 3)

t3α

Γ (3α + 1)

+

(
(6α + 12)

(α + 3)
−(9α + 24)(2α + 2)

(α + 3)(2α + 3)

)
t3α+1

Γ (3α + 2)

]
.

The final solution is given by

u(x, y, t) = u0(x, y, t)+ u1(x, y, t)+ u2(x, y, t)+ u3(x, y, t)+ . . .
(26)
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Table 1. Maximum absolute error for (x, y) ∈ [0.01, 0.1] and distinct value of t and α
for Ex. 6.1.

t α = 2 α = 1.95

0.01 1.901724e−06 2.023245e−06

0.02 2.115769e−05 2.279847e−05

0.03 9.413964−05 2.023245e−04

0.04 2.856856e−04 3.085486e−04

0.05 7.015689e−04 7.553783e−04

0.06 1.505322e−03 1.613395e−03

0.07 2.939414e−03 3.132917e−03

0.08 5.350787e−03 5.667438e−03

0.09 9.220735e−03 9.701331e−03

0.10 1.519915e−02 1.519915e−02

Table 2. The Comparative analysis of maximum absolute error for the SADT and
existing methods for distinct value of t and α, for Ex. 6.1.

t α = 1.45 α = 1.65

Methods SADT RBF PU Method [36] SADT RBF PU Method [36]

1/40 1.2520e−04 1.4587e−04 7.6894e−04 1.9204e−04

1/80 1.0872e−05 5.0793e−05 6.3571e−06 7.6507e−05

1/160 1.0045e−06 1.7519e−05 5.7788e−07 3.0822e−05

1/320 9.6980e−08 6.1028e−06 5.6512e−08 1.2305e−05

1/640 9.7131e−09 2.1131e−06 5.8764e−09 4.8922e−06

1/1280 1.0060e−09 7.2381e−07 6.4297e−10 1.9304e−06

Fig. 1. Approximate solution u(x, y, t) at x = 0.1 and α=2, for Ex. 6.1.
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Fig. 2. Analytical solution u(x, y, t) at x = 0.1 and α=2, for Ex. 6.1.

Fig. 3. Absolute error of SADT at x = 0.1 and distinct value of α, for Ex. 6.1.
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Application 6.2. Consider another form of FCHE given in the
article [36]

c
0D

α
t u(x, y, t)+ut(x, y, t)−∆u(x, y, t) = (

6t2

Γ (4− α)

+ (2 + α)t1+α + 2π2t2+α) sin(πx) sin(πy)

(27)

Where (x, y, t) ∈ Ω × (0, T ], and the analytical solution of (27) is
u(x, y, t) = sin(πx) sin (πy)tα+2.

Solution. Here f(x, y, t) =
(

6t2

Γ (4−α)
+ (2 + α)t1+α + 2π2t2+α

)
sin(πx) sin(πy), β = 1, and from the analytical solution we can find
the initial conditions. Now, we apply the proposed technique, SADT,
to equation (27) so, we get
u0(x, y, t) = 0,

u1(x, y, t) =

[
12

Γ (4− α)

tα+2

Γ (α + 3)
+ (2 + α)Γ (α + 2)

t2α+1

Γ (2α + 2)

+2π2Γ (α + 2)
t2α+2

Γ (2α + 3)

]
sin(πx) sin(πy)

u2(x, y, t) =

[(
−24

Γ (4− α)
+ 2π2Γ (α + 3)

)
× t2α+2

Γ (2α + 3)
+

t3α

Γ (3α + 1)

×(α + 2)(2α + 1)Γ (α + 2)

(2α + 2)
+

(
(2 + α)Γ (α + 2)− 12(α + 2)

(α + 3)Γ (4− α)

)
× t2α+1

Γ (2α + 2)
+

(
−2π2Γ (2α + 2)Γ (α + 3)

(2α + 3)
− 2(2 + α)Γ (α + 2)

)
× t3α+1

Γ (3α + 2)
− 4π2Γ (α + 3)

t3α+2

Γ (3α + 3)
+

12

Γ (4− α)

tα+2

Γ (α + 3)

]
× sin(πx) sin(πy),

u3(x, y, t) =

[(
−2π2(2α + 2)Γ (α + 3)

(2α + 3)
− 24π2(α + 2)

(α + 3)Γ (4− α)
−

24(2α + 2)

(2α + 3)Γ (4− α)
+ 2π2(2 + α)

Γ (α + 2)

Γ (2)

)
× t3α+1

Γ (3α + 2)
+(

−24

Γ (4− α)
+
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2π2Γ (α + 3))
t2α+2

Γ (2α + 3)
+

(
− 12(α + 2)(2α + 1)

(α + 3)Γ (4− α)(2α + 2)
+

(α + 2)(2α + 1)Γ (α + 2)

(2α + 2)

)
+

t3α

Γ (3α + 1)

(
48π2

Γ (4− α)
− 4π2Γ (α + 3)

)
t3α+2

Γ (3α + 3)
+

t4α

Γ (4α + 1)

(
2π2(2α + 1)(α + 2)Γ (α + 2)

(2α + 2)

−2π2Γ (α + 3)(2α + 2)(3α + 1)

Γ (3α + 2)(2α + 3)
− 2Γ (α + 2)(α + 2)(3α + 1)

(3α + 2)

)
+

(
(2 + α)Γ (α + 2) +

12(α + 2)

(α + 3)Γ (4− α)

)
t2α+1

Γ (2α + 2)
+

12

Γ (4− α)

tα+2

Γ (α + 3)

+8π4Γ (α+2)
t4α+2

Γ (4α + 3)
+

(
−4π4(2α + 2)Γ (α + 3)

(2α + 3)
− 4π2Γ (2α + 3)(3α + 2)

(3α + 3)

+4π2(2 + α)
Γ (α + 2)

Γ (2)

)
t4α+1

Γ (4α + 2)

]
× sin(πx) sin(πy)

The final solution is given by

u(x, y, t) = u0(x, y, t)+ u1(x, y, t)+ u2(x, y, t)+ u3(x, y, t)+ . . .
(28)

Table 3. Maximum absolute error for (x, y) ∈ [0.01, 0.1] and distinct value of t and α
for Ex. 6.2.

t α = 2 α = 1.95

0.01 2.745706e−07 5.304699e−07

0.02 4.393655e−06 7.142152e−06

0.03 2.224556−05 3.269201e−05

0.04 7.031549e−05 9.620824e−05

0.05 1.716896e−04 2.222602e−04

0.06 3.560595e−04 4.405737e−04

0.07 6.597259e−04 7.857576e−04

0.08 1.125603e−03 1.297095e−03

0.09 1.803226e−03 2.018378e−03

0.10 2.748749e−03 2.997764e−03
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Table 4. The Comparative analysis of maximum absolute error for the SADT and
existing methods for distinct value of t and α, for Ex. 6.2.

t α = 1.45 α = 1.65

Methods SADT RBF PU Method [36] SADT RBF PU Method [36]

1/40 1.6721e−07 1.9018e−04 8.6385e−08 8.5648e−04

1/80 1.9760e−08 5.7019e−05 6.1827e−09 73.9328e−04

1/160 2.2424e−09 1.7025e−05 4.3288e−10 1.7791e−04

1/320 2.4825e−10 4.9817e−06 3.0108e−11 8.1217e−05

1/640 2.7049e−11 1.4812e−06 2.0899e−12 3.6646e−05

1/1280 2.9160e−12 4.3706e−07 1.4497e−13 1.6309e−05

Fig. 4. Approximate solution u(x, y, t) at t = 0.1 and α=2, for Ex. 6.2.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

15 Mohan et al 1-20



16 Lalit Mohana,b, Amit Prakasha,∗

Fig. 5. Analytical solution u(x, y, t) at t = 0.1, for Ex. 6.2.

Fig. 6. Absolute error of SADT at x=0.1 and distinct value of α, for Ex. 6.2.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

16 Mohan et al 1-20



Title Suppressed Due to Excessive Length 17

7 Simulation results and discussion

This article uses SADT to solve two FCHE examples. For Ex. 6.1 and
Ex. 6.2, the maximum absolute errors are found for distinct value
of α and t. The results are shown in tables 1 and 3, for Ex. 6.1 and
Ex. 6.2. It is evident that the SADT has relatively small maximum
absolute errors. The current techniques for Ex. 6.1 and Ex. 6.2 are
compared with the maximum absolute errors of the SADT in Tables
2 and 4. The results show that the SADT is more accurate than the
existing techniques,with a maximum absolute errors that is lower
than the RBF-PU approach.
The exact solution and the approximate solution by the SADT are
represented by graphs at y = 0.1 and distinct value of x, t, α in Fig.
(1)− (2) for Ex. 6.1 and in Fig. (4)− (5) for Ex. 6.2. Figure 3 illus-
trates the absolute, whereas Fig. 6 illustrates the absolute for Ex.
6.2. It is evident that the precise answer and the numerical solution
are almost identical in nature. Therefore, it is evident from the fig-
ures and tables that the suggested method, SADT, is a very effective
and efficient method for solving the fractional models.

8 Conclusions

In this article, we investigate the FCHE for analysing the conduction
of heat in porous medium via Caputo fractional order operator. The
existence and uniqueness is analysed by using the fixed point theo-
rem and the highest errors of the designed method, SADT, is also
analysed. Two different cases are solved, and the proposed approach,
SADT, yields more accurate results than the existing methods; also,
the maximum absolute errors for SADT are smaller than those of the
existing method. This research will be beneficial for handling the is-
sues of thermo-elastic in porous media since it provides an accurate
forecast about the heat conduction and a mathematical explanation
of how it works. Hence, we can conclude that the SADT is a highly
efficient technique that can be used to find the solution of non-linear
fractional order models arising in real life phenomena.
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Abstract

In this paper, the generalization of Simpson’s identity has been derived. This generalized
identity has been used to obtain new Hermite-Hadamard inequalities for differentiable convex
and quasi-convex functions. Also, the validation of the derived inequalities has been established
using suitable examples.
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1 Introduction

The theory of inequality has many applications in mathematics, physical sciences and engineering
fields. It includes the study of various inequalities such as Holder’s inequality, Jensen’ inequality,
Azuma’s inequality, Boole’s inequality, Hermite-Hadamard inequality and many more well known
inequalities. Hermite-Hadamard inequality is one of the most famous inequality in mathematics.
It was derived independently by Charles Hermite and Jacques Hadamard. It is involved with the
convexity of function. In 1998, Dragomir and Agarwal[6] derived the inequality associated with
the right hand side of Hermite-Hadamard inequality for differentiable convex function. Later on
this estimate was improved by Pearce and Pecaric[21]. Kirmaci[17] discovered the inequality linked
with the left hand side of Hermite-Hadamard inequality. By using the work of Dragomir et al.
and Kirmaci many researcher have derived the inequalities associated with left side and right side
of Hermite-Hadamard inequality. The Hermite-Hadamard integral inequality for convex functions
is used in Kirmaci’s work to present a number of inequalities for differentiable convex functions.
Kirmaci’s work employs the Hermite-Hadamard integral inequality holding for convex functions to
describe a few inequalities for differentiable convex functions. Additionally, certain applications to
unique real number means were offered, and some midway formula error estimates were discovered.
Later, the inequality related to right hand side of Hermite-Hadamard inequality for quasi-convex
function was discovered by D. A Ion.[15]

Before discussing the the main findings of the paper, some prilimianary concepts that are useful
for the better understanding of the research. We begin with the Hermite-Hadamard inequality.

%

(
y1 + z1

2

)
≤ 1

z1 − y1

∫ z1

y1

%(s)ds ≤ %(y1) + %(z1)

2
. (1)

Next, we define convex and quasi convex function.

Definition 1. A function % : I → R is said to be convex if

%(y1κ + (1− κ)z1) ≤ κ%(y1) + (1− κ)%(z1),

for all y1, z1 ∈ I and 0 < κ < 1.

1
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Definition 2. A function % : I → R is said to be quasi-convex if

%(y1κ + (1− κ)z1) ≤ max{%(y1), %(z1)},

for all y1, z1 ∈ I and 0 < κ < 1.

In [20](page 3 , Lemma 1), Alomari et al. has derived the following identity.

Lemma 1. Let L[y1, z1] denote the class of all Lebesgue integrable functions on [y1, z1]. Let % :
[y1, z1]→ R be a differentiable function on (y1, z1) with y1 < z1. If %′ ∈ L[y1, z1], then(

z1 − y1
3

)[
%(y1) + %(z1)

2
+ 2f

(
y1 + z1

2

)]
−
∫ z1

y1

%(s)ds

=

∫ 1

0

[(
κ − 1

3

)
%′
(
κ
(
y1 + z1

2

)
+ (1− κ)y1

)
+

(
κ − 2

3

)
%′
(
κz1 + (1− κ)

(
y1 + z1

2

))]
dκ.

(2)

2 Main Results

In this section, we generalize the identity obtained by Alomari et al.[20]. Also, with the help of
this generalized identity, several Hermite-Hadamard-type inequalities have been derived. Also, the
validity of derived inequalities has been derived.

Theorem 1. Let % : [y1, z1]→ R be a differentiable function on (y1, z1) with y1 < z1. If %′ ∈ L[y1, z1],
then the following equality holds:

2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

= (x− y1)2
∫ 1

0

(
κ − 1

3

)
%′(κx + (1− κ)y1)dκ + (z1 − x)2

∫ 1

0

(
κ − 2

3

)
%′(κz1 + (1− κ)x)dκ.

(3)

Proof. By applying integration by parts two times,

I1 =

∫ 1

0

(
κ − 1

3

)
%′(κx + (1− κ)y1)dκ

=

(
κ − 1

3

)
%(κx + (1− κ)y1)

x− y1

∣∣∣∣1
0

− 1

(x− y1)

∫ 1

0

%(κx + (1− κ)y1)dκ

=
2%(x)

3(x− y1)
+

%(y1)

3(x− y1)
− 1

(x− y1)

∫ 1

0

%(κx + (1− κ)y1)dκ. (4)

Making use of change of the variable s = κx + (1− κ)y1 and multiplying by (x− y1)2 both sides,
we have

(x− y1)2I1 =
2

3
(x− y1)%(x) +

1

3
(x− y1)%(y1)−

∫ x

y1

%(s)ds. (5)

Similarly,

(x− z1)2I2 =
2

3
(z1 − x)%(x) +

1

3
(z1 − x)%(z1)−

∫ z1

x

%(s)ds. (6)

By adding (5) and (6) we have required identity.

Remark 1. By setting x = y1+z1
2 in Theorem1, the identity (3) becomes the identity (2)

Next, the certain estimates associated with RHS of (3) are given.

2
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Theorem 2. Let % : [y1, z1] → R be a differentiable function on (y1, z1) with y1 < z1. If |%′| is
convex on [y1, z1], then the following inequality holds:∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤ (x− y1)2

(
29|%′(x)|

162
+

8|%′(y1)|
81

)
+ (z1 − x)2

(
8|%′(z1)|

81
+

29|%′(x)|
162

)
. (7)

Proof. Using Theorem 1 and the convexity of |%′|, we have∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤ (x− y1)2

∫ 1

0

|κ − 1

3
||%′(κx + (1− κ)y1)|dκ + (z1 − x)2

∫ 1

0

|κ − 2

3
||%′(κz1 + (1− κ)x)|dκ.

≤ (x− y1)2
∫ 1

0

|κ − 1

3
|
(
κ|%′(x)|+ (1− κ)|%′(y1)|

)
dκ

+ (z1 − x)2
∫ 1

0

|κ − 2

3
|
(
κ|%′(z1)|+ (1− κ)|%′(x)|dκ

= (x− y1)2
[
|%′(x)|

∫ 1

0

κ|κ − 1

3
|dκ + |%′(y1)|

∫ 1

0

(1− κ)|κ − 1

3
|dκ
]

+ (z1 − x)2
[
|%′(z1)|

∫ 1

0

κ|κ − 2

3
|dκ + |%′(x)|

∫ 1

0

(1− κ)|κ − 2

3
|dκ
]

= (x− y1)2
(

29|%′(x)|
162

+
8|%′(y1)|

81

)
+ (z1 − x)2

(
8|%′(z1)|

81
+

29|%′(x)|
162

)
.

This completes the proof.

Example 1. Let the function f be defined as f(x) = x6. Then the function f is convex on [1, 2]. We
have ∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣ =

∣∣∣∣2x6

3
+

2

15
+

508

21

∣∣∣∣ (8)

and

(x− y1)2
(

29|%′(x)|
162

+
8|%′(y1)|

81

)
+ (z1 − x)2

(
8|%′(z1)|

81
+

29|%′(x)|
162

)
= (x− 1)

2

(
16

27
+

29|x|5

27

)
+ (2− x)2(

512

27
+

29|x|5

27
). (9)
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Figure 1:

Here Curve 1 and Curve 2 represents the expression (8) and (9) respectively. Figure 1 depicts
that the Curve 1 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (8) is less than the expression (9). This validates the inequality (7).

Theorem 3. Let % : [y1, z1] → R be a differentiable function on (y1, z1) with y1 < z1. If |%′|q is
convex on [y1, z1], then the following inequality holds:∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤
(

2p+1 + 1

(3p + 3)3p

) 1
p 1

2
1
q

[
(x− y1)2

(
|%′(y1)|q + |%′(x)|q

) 1
q + (z1 − x)2

(
|%′(x)|q + |%′(z1)|q

) 1
q

]
. (10)

Proof. Using Theorem 1, Holder’s inequality and the convexity of |%′|q, we have∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤ (x− y1)2

∫ 1

0

|κ − 1

3
||%′(κx + (1− κ)y1)|dκ + (z1 − x)2

∫ 1

0

|κ − 2

3
||%′(κz1 + (1− κ)x)|dκ.

≤ (x− y1)2
(∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣pdκ) 1
p
(∫ 1

0

|%′(κx + (1− κ)y1)|qdκ
) 1

q

+ (z1 − x)2
(∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣p) 1
p
(∫ 1

0

|%′(κz1 + (1− κ)x)|qdκ
) 1

q

≤ (x− y1)2
(

2p+1

(3p + 3)3p

) 1
p
(∫ 1

0

(
κ|%′(x)|q + (1− κ)|%′(y1)|q

)
dκ
) 1

q

+ (z1 − x)2
(

2p+1 + 1

(3p + 3)3p

) 1
p
(∫ 1

0

(
κ|%′(z1)|q + (1− κ)|%′(x)|qdκ)

) 1
q

=

(
2p+1 + 1

(3p + 3)3p

) 1
p 1

2
1
q

[
(x− y1)2

(
|%′(y1)|q + |%′(x)|q

) 1
q + (z1 − x)2

(
|%′(x)|q + |%′(z1)|q

) 1
q

]
.

This completes the proof.
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Example 2. Let the function f be defined as f(x) = x4. Then the function f is convex on [0, 1]. We
have ∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣ =

∣∣∣∣2x4

3
+

2

15
− x

3

∣∣∣∣ (11)

and

≤
(

2p+1 + 1

(3p + 3)3p

) 1
p 1

2
1
q

[
(x− y1)2

(
|%′(y1)|q + |%′(x)|q

) 1
q + (z1 − x)2

(
|%′(x)|q + |%′(z1)|q

) 1
q

]
=

17
1
3 2

2
3 3

2
3

9
(|x|5 + (|x| 92 + 1)

2
3x2 − 2((|x|5 + (|x| 92 + 1)

2
3 )x + (|x|5 + (|x| 92 + 1)

2
3 ). (12)

Figure 2:

Here Curve 1 and Curve 2 represents the expression (11) and (12) respectively. Figure 2 depicts
that the Curve 1 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (11) is less than the expression (12). This validates the inequality (10).

Theorem 4. Let % : [y1, z1] → R be a differentiable function on (y1, z1) with y1 < z1. If |%′|q is
convex on [y1, z1], then the following inequality holds:∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤
(

5

18

) 1
p
[
(x− y1)2

(
8|%′(y1)|q

81
+

29|%′(x)|q

162

) 1
q

+ (z1 − x)2
(

8
|%′(x)|q

81
+

29|%′(z1)|q

162

) 1
q
]
. (13)
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Proof. Using Theorem 1, Power-mean inequality and the convexity of |%′|q, we have∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤ (x− y1)2

∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣|%′(κx + (1− κ)y1)|dκ + (z1 − x)2
∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣|%′(κz1 + (1− κ)x)|dκ.

≤ (x− y1)2
(∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣dκ) 1
p

×
(∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣|%′(κx + (1− κ)y1)|qdκ
) 1

q

+ (z1 − x)2
(∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣dκ) 1
p

×
(∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣|%′(κz1 + (1− κ)x)|qdκ
) 1

q

≤ (x− y1)2
(

5

18

) 1
p
(∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣(κ|%′(x)|q + (1− κ)|%′(y1)|q
)
dκ
) 1

q

+ (z1 − x)2
(

5

18

) 1
p
(∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣|(κ|%′(z1)|q + (1− κ)|%′(x)|qdκ
) 1

p

dκ

= (x− y1)2
(

5

18

) 1
p
(∫ 1

0

κ
∣∣∣∣κ − 1

3

∣∣∣∣|%′(x)|qdκ +

∫ 1

0

(1− κ)

∣∣∣∣κ − 1

3

∣∣∣∣|%′(y1)|qdκ
) 1

q

+ (z1 − x)2
(

1

3

) 1
p
(∫ 1

0

κ
∣∣∣∣κ − 2

3

∣∣∣∣|%′(z1)|qdκ +

∫ 1

0

(1− κ)

∣∣∣∣κ − 2

3

∣∣∣∣|%′(x)|qdκ
) 1

q

=

(
5

18

) 1
p
[
(x− y1)2

(
8|%′(y1)|q

81
+

29|%′(x)|q

162

) 1
q

+ (z1 − x)2
(

8
|%′(x)|q

81
+

29|%′(z1)|q

162

) 1
q
]
.

This completes the proof.

Example 3. Let the function f be defined as f(x) = x3. Then the function f is convex on [0, 1]. We
have ∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣ =

∣∣∣∣4x3

3
− 2x

3

∣∣∣∣ (14)

and (
5

18

) 1
p
[
(x− y1)2

(
8|%′(y1)|q

81
+

29|%′(x)|q

162

) 1
q

+ (z1 − x)2
(

8
|%′(x)|q

81
+

29|%′(z1)|q

162

) 1
q
]

=
5

1
4 3

1
2

27
(x + 1)2(29|x| 83 + 16)

3
4 (15)
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Figure 3:

Here Curve 1 and Curve 2 represents the expression (14) and (15) respectively. Figure 3 depicts
that the Curve 1 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (14) is less than the expression (15). This validates the inequality (13).

Theorem 5. Let % : [y1, z1] → R be a differentiable function on (y1, z1) with y1 < z1. If |%′| is
quasi-convex on [y1, z1], then the following inequality holds:∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤ 5(x− y1)2

18
max{|%′(x)|, |%′(y1)|}+

5(z1 − x)2

18
max{|%′(z1), |%′(x)|}. (16)

Proof. Using Theorem 1 and the quasi-convexity of |%′|, we have∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤ (x− y1)2

∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣|%′(κx + (1− κ)y1)|dκ + (z1 − x)2
∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣|%′(κz1 + (1− κ)x)|dκ.

≤ (x− y1)2
∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣max{|%′(x)|, |%′(y1)|}dκ + (z1 − x)2
∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣max{|%′(z1), |%′(x)|}dκ

=
5(x− y1)2

18
max{|%′(x)|, |%′(y1)|}+

5(z1 − x)2

18
max{|%′(z1), |%′(x)|}

This completes the proof.

Example 4. Let the function f be defined as f(x) = x5. Then the function f is convex on [−3, 5].
We have∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣ = |16x5

3
− 3368x

3
+

7448

3
| (17)

and

5(x− y1)2

18
max{|%′(x)|, |%′(y1)|}+

5(z1 − x)2

18
max{|%′(z1), |%′(x)|}

=
5(x + 3)2max{405, 5x4}

18
+

5(5− x)2max{3125, 5x4}
18

. (18)
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Figure 4:

Here Curve 1 and Curve 2 represents the expression (17) and (18) respectively. Figure 4 depicts
that the Curve 1 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (17) is less than the expression (18). This validates the inequality (16).

Theorem 6. Let % : [y1, z1] → R be a differentiable function on (y1, z1) with y1 < z1. If |%′|q is
quasi-convex on [y1, z1], then the following inequality holds:∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤ (x− y1)2

(
2p+1 + 1

(3p + 1)3p

) 1
p (

max{|%′(x)|q, |%′(y1)|q}
) 1

q

+ (z1 − x)2
(

2p+1 + 1

(3p + 1)3p

) 1
p (

max{|%′(z1)|q, |%′(x)|q}
) 1

q . (19)

Proof. Using Theorem 1, Holder’s inequality and the quasi-convexity of |%′|q, we have∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤ (x− y1)2

∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣|%′(κx + (1− κ)y1)|dκ + (z1 − x)2
∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣|%′(κz1 + (1− κ)x)|dκ.

≤ (x− y1)2
(∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣pdκ) 1
p
(∫ 1

0

|%′(κx + (1− κ)y1)|qdκ
) 1

q

+ (z1 − x)2
(∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣pdκ) 1
p
(∫ 1

0

|%′(κz1 + (1− κ)x)|qdκ
) 1

q

≤ (x− y1)2
(

2p+1 + 1

(3p + 1)3p

) 1
p (
max{|%′(x)|q, |%′(y1)|q}

) 1
q

+ (z1 − x)2
(

2p+1 + 1

(3p + 1)3p

) 1
p (
max{|%′(z1)|q, |%′(x)|q}

) 1
q .

(20)

This completes the proof.
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Example 5. Let the function f be defined as f(x) = x7. Then the function f is convex on [−2, 1].
We have

∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣ = |2x7 − 43x− 425

8
| (21)

and

(x− y1)2
(

2p+1 + 1

(3p + 1)3p

) 1
p (
max{|%′(x)|q, |%′(y1)|q}

) 1
q

+ (z1 − x)2
(

2p+1 + 1

(3p + 1)3p

) 1
p (
max{|%′(z1)|q, |%′(x)|q}

) 1
q

=
1

3
(x + 2)2(max{200704, 49x12}) 1

2 +
1

3
(1− x)2(max{49, 49x12}) 1

2 . (22)

Figure 5:

Here Curve 1 and Curve 2 represents the expression (21) and (22) respectively. Figure 5 depicts
that the Curve 5 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (21) is less than the expression (22). This validates the inequality (19).

Theorem 7. Let % : [y1, z1] → R be a differentiable function on (y1, z1) with y1 < z1. If |%′|q is
quasi-convex on [y1, z1], then the following inequality holds:∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤ 5(x− y1)2

18

(
max{|%′(x)|q, |%′(y1)|q}

) 1
q

+
5(z1 − x)2

18

(
max{|%′(z1)|q, |%′(x)|q}

) 1
q

. (23)
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Proof. Using Theorem 1, Power-mean inequality and the quasi-convexity of |%′|q, we have∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣
≤ (x− y1)2

∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣|%′(κx + (1− κ)y1)|dκ + (z1 − x)2
∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣|%′(κz1 + (1− κ)x)|dκ.

≤ (x− y1)2
(∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣dκ) 1
p

×
(∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣|%′(κx + (1− κ)y1)|qdκ
) 1

q

+ (z1 − x)2
(∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣dκ) 1
p

×
(∫ 1

0

|
∣∣∣∣κ − 2

3

∣∣∣∣%′(κz1 + (1− κ)x)|qdκ
) 1

q

≤ (x− y1)2
(

5

18

) 1
p
(∫ 1

0

∣∣∣∣κ − 1

3

∣∣∣∣(max{|%′(x)|q, |%′(y1)|q}dκ
) 1

q

+ (z1 − x)2
(

5

18

) 1
p
(∫ 1

0

∣∣∣∣κ − 2

3

∣∣∣∣(max{|%′(z1)|q, |%′(x)|q}dκ
) 1

q

= (x− y1)2
(

5

18

) 1
p
(

5

18

) 1
q
(
max{|%′(x)|q, |%′(y1)|q}

) 1
q

+ (z1 − x)2
(

5

18

) 1
p
(

5

18

) 1
q
(
max{|%′(z1)|q, |%′(x)|q}

) 1
q

=
5(x− y1)2

18

(
max{|%′(x)|q, |%′(y1)|q}

) 1
q

+
5(z1 − x)2

18

(
max{|%′(z1)|q, |%′(x)|q}

) 1
q

. (24)

This completes the proof.

Example 6. Let the function f be defined as f(x) = x3. Then the function f is convex on [−8,−2].
We have∣∣∣∣2(z1 − y1)%(x)

3
+

(x− y1)%(y1)

3
+

(z1 − x)%(z1)

3
−
∫ z1

y1

%(s)ds

∣∣∣∣ = |4x3 − 168x− 340| (25)

and

5(x− y1)2

18

(
max{|%′(x)|q, |%′(y1)|q}

) 1
q

+
5(z1 − x)2

18

(
max{|%′(z1)|q, |%′(x)|q}

) 1
q

=
5

4
5 (65)

1
5

54

(
(x + 8)2max{384(2

1
2 )(3

1
4 ), 3

5
4 |x| 52 } 4

5 + (2 + x)2max{12, 3
5
4 |x|

5
2 }
)
. (26)

Figure 6:
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Here Curve 1 and Curve 2 represents the expression (25) and (26) respectively. Figure 6 depicts
that the Curve 1 is below Curve 2. Hence, it also refers to our calculation where the value of the
expression (25) is less than the expression (26). This validates the inequality (23).
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Abstract

Due to the great success of hypergeometric functions, we provide the analytical solutions of certain definite
logarithmic integrals and Nielsen-type integrals in terms of multi-variable Kampé de Fériet functions with
suitable convergence conditions and higher harmonic sums by using series rearrangement technique and
incomplete Gamma function.
Further we also obtain the solution of other related logarithmic integrals in terms of generalized hy-
pergeometric functions and Kummer’s confluent hypergeometric functions by using series rearrangement
technique.
The results presented in the paper and comparable outcomes are hoped to be supplied by the use of
computer-aid programs, for example, Mathematica.

Key Words and Phrases. Polylogarithm functions; Harmonic sums; Finite Mellin transforms; Nielsen-
type integrals.
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1. Introduction, definitions and known results

Here and elsewhere, we use the following standard notations, let R and C denote the sets of real and
complex numbers, respectively. Also let

N0 = N ∪ {0} , N = {1, 2, 3, . . . } = N0\{0} ,

Z−0 = {0,−1,−2, . . . } = Z− ∪ {0} , Z− = {−1,−2,−3, . . . },
and Z = Z−0 ∪ N being the sets of integers.

The incomplete gamma function is denoted by γ(z, α) ([23, p.127, Question (2)], see also [13, p. 15,
Question. (10)]) and is defined by :

γ(z, α) :=

∫ α

0

e−ttz−1dt ; (<(z) > 0, |arg(α)| < π),

=
αz

z
1F 1

[
z;

z + 1;
− α

]
. (1.1)

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

33 Gupta et al 33-47



The polylogarithm function (also known as Jonquière’s function) ([27, pp.197–198], see also [14] and [15])
Lis(z), is defined for any complex s and z;

Lis(z) = F (z, s) = PolyLog[s, z] :=
∞∑
n=1

zn

ns
=
∞∑
n=0

zn+1

(n+ 1)s
; s 6= 1,

(
|z| < 1, s ∈ C\{1}; |z| = 1, z 6= 1,<(s) > 0; z = 1,<(s) > 1

)
.

The polylogarithm integrals ([3, p.79, Equation (14)], see also [11, p.1232, Equation (1.1)]) are given by:

Lin(x) := Sn−1,1(x) =
(−1)n−1

(n− 2)!

∫ 1

0

1

z
[`n(z)]n−2`n(1− zx)dz,

(
n ∈ N\{1} ; x ∈ C

)
.

The Nielsen-integrals ([3, p. 77, Equation (4)], see also [10, p. 647, Equation (1)], [11, p.1232, Equation
(1.3)] and [18]) are given by:

Sn,p(x) :=
(−1)n+p−1

(n− 1)!p!

∫ 1

0

1

z
[`n(z)]n−1[`n(1− zx)]pdz,

(
n, p ∈ N ; x ∈ C

)
.

Generalized Nielsen-integrals ([3, p. 80, Equation (18)], see also [12], [24]) are given by:

Sn,p,q(x) :=
(−1)n+p+q−1

(n− 1)!p!q!

∫ 1

0

1

z
[`n(z)]n−1[`n(1− zx)]p[`n(1 + zx)]qdz, (1.2)

(
p, n ∈ N ; x ∈ C ; q ∈ N0

)
.

2. Development of finite Mellin transform and harmonic sums

The Development of finite Mellin transform and harmonic sums is in the continuation of ([20, p.1,
Equations (1), (3) and (3’) and pp.4-5, Equations (6) and (7)], see also [7], [21]).

One-sided or unilateral Laplace transform is defined by:

L[f(t); z] =

∫ ∞
0

e−tzf(t)dt = φ(z), (2.1)

then by the substitution t = −`n(x), the one-sided Laplace transform (2.1) is converted into a finite
Mellin transforms, given by (2.2):

M [f(−`n(x)); z] = φ(z) =

∫ 1

0

xz−1f(−`n(x))dx, (2.2)

provided that the integrals (2.1) and (2.2) exist subject to suitable convergence condition on real part of
complex parameter z.
The infinite Mellin transform is defined by:

M [g(x); z] =

∫ ∞
0

xz−1g(x)dx = ψ(z), (2.3)

provided that above integral exist.

2
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This integral transform is closely connected to the theory of Dirichlet series, and is often used in number
theory, mathematical statistics and the theory of asymptotic expansions, it is closely related to the
Laplace transform and the Fourier transform, and the theory of the Gamma function and allied special
functions. Also the Mellin transform is extremely useful for certain applications including solving Laplace
equation in polar coordinates, as well as for estimating integrals.
The substitution x = e−t transforms (2.3) into two-sided Laplace transforms (2.4) or into the sum of two,
one-sided Laplace transforms (2.5), therefore

ψ(z) =

∫ +∞

−∞
e−tzg(e−t)dt, (2.4)

=

∫ ∞
0

e−tzg(e−t)dt+

∫ ∞
0

e−t(−z)g(et)dt. (2.5)

In the literature one often defines the transform shifted over ”one” as in [34, p.2042, Equation (30)]. One
may consider the Mellin-transformation ([4, p.1, Equation (2)], see also [16, p. 159]) for the function
f(z), in the form:

M{f(z);N} =

∫ 1

0

zN−1f(z)dz,

provided that the above integral exists. Here N denotes the integer moment-index, (which is even or odd
positive integers depending on the quantity being studied).
The Mellin transform of just a power of `n(1 − z) can be replaced immediately using the formula, ([3,
p.89, Equation (84)], [34, pp.2042–2043, Equations (35) and (36)]):∫ 1

0

zm`np(1− z)dz =
(−1)pp!

(m+ 1)
S1, ..., 1︸ ︷︷ ︸

p

(m+ 1), (2.6)

in which the S-function has p indices that are all 1.
[7, p137, Equation (1) and p. 312, Equation (1)] see also [20], [21]∫ ∞

0

e−αxxs−1dx =
Γ(s)

αs
; (<(α) > 0,<(s) > 0). (2.7)

Using suitable substitution in equation (2.7) and further adjustment of parameters, we can derive the
following integral: ∫ 1

0

zm`np(z)dz =
(−1)pΓ(p+ 1)

(m+ 1)p+1
, (2.8)

(<(m) > −1,<(p) > −1).

The functions emerging in perturbation calculations in massless Quantum Field Theories belong to the
class discussed by Nielsen [18] and their Mellin-convolutions. By explicit calculation we will show that
the Mellin-transforms of such functions can be represented by linear combinations of the finite harmonic
sums (see [3, p.77, Equation (3)], [4, p.1, Equation (4)]).

Sk1,...,km(N) =
N∑

n1=1

(sign(k1))n1

n
|k1|
1

n1∑
n2=1

(sign(k2))n2

n
|k2|
2

...

nm−1∑
nm=1

(sign(km))nm

n
|km|
m

; N ∈ N, ∀`, k` 6= 0.

The notation that is used for the various functions and series in this paper is closely related to how
useful it can be for a computer program. This notation stays as closely as possible to existing ones. The
harmonic series [34, p.2037, Equations (1) and (2)] is defined by:

Sm(n) =
n∑
i=1

1

im
,

3
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S−m(n) =
n∑
i=1

(−1)i

im
,

in which m > 0. The general single harmonic sums S±k(N), k > 0 [4, p. 3, Equations (14), (15), (16)
and (17)] are obtained by :

Sk(N) =
(−1)k−1

(k − 1)!

∫ 1

0

[`n(x)]k−1
(
xN − 1

x− 1

)
dx,

S−k(N) =
(−1)k−1

(k − 1)!

∫ 1

0

[`n(x)]k−1
(

(−x)N − 1

x+ 1

)
dx,

N∑
k=1

xk

k`
=

(−1)`−1

(`− 1)!

∫ x

0

[`n(z)]`−1
(
zN − 1

z − 1

)
dz,

N∑
k=1

(−x)k

k`
=

(−1)`−1

(`− 1)!

∫ x

0

[`n(z)]`−1
(

(−z)N − 1

z + 1

)
dz.

One can define higher harmonic series [34, pp.2037–2038, Equations (3), (4) and (5)] given by:

Sm,j1,...,jp(n) =
n∑
i=1

1

im
Sj1,...,jp(i),

S−m,j1,...,jp(n) =
n∑
i=1

(−1)i

im
Sj1,...,jp(i),

with the same conditions on m. The m and the ji, (1 ≤ i ≤ p) are referred to as the indices of the
harmonic series. Hence

S1,−5,3(n) =
n∑
i=1

1

i

i∑
j=1

(−1)j

j5

j∑
k=1

1

k3
.

For numerical computations one may use the recursion relations [4, p.22, Equations (163) and (164)] for
complex values of N , in terms of products of single harmonic sums only

S−1, ...,−1︸ ︷︷ ︸
k

(N) =
1

k

k∑
`=1

S(−1)`|`|(N)S−1, ...,−1︸ ︷︷ ︸
k−`

(N),

S1, ..., 1︸ ︷︷ ︸
k

(N) =
1

k

k∑
`=1

S`(N)S1, ..., 1︸ ︷︷ ︸
k−`

(N).

The finite harmonic sums are connected by various algebraic relations. We will only consider the multiple
harmonic sums into a single sum: [4, p.19, Equation (126)] see also [34, p. 2056, Equation (92)]

S1,1(N) =
1

2

[
S2
1(N) + S2(N)

]
.

[4, p.20, Equation (144)] see also [34, p. 2056, Equation (93)]

S1,1,1(N) =
1

6
S3
1(N) +

1

2
S1(N)S2(N) +

1

3
S3(N).

[4, p.21, Equation (156)] see also [34, p. 2056, Equation (94)]

S1,1,1,1(N) =
1

4
S4(N) +

1

8
S2
2(N) +

1

3
S3(N)S1(N) +

1

4
S2(N)S2

1(N) +
1

24
S4
1(N).

4
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The multi-variable extension of Kampé de Fériet double hypergeometric function [28, p. 454] see also
[9], [31, pp.65-66], [32, p. 1127, Eq. (4.1)] is given in the form:

F p:q1;q2;...;qn`:m1;m2;...;mn

 (ap) : (b
(1)
q1 ); . . . ; (b

(n)
qn );

x1, . . . , xn

(α`) : (β
(1)
m1); . . . ; (β

(n)
mn);


=

∞∑
s1,...,sn=0

Λ(s1, . . . , sn)
x1
s1

s1!
. . .

xn
sn

sn!
, (2.9)

where

Λ(s1, . . . , sn) =

p∏
j=1

(aj)s1+...+sn

q1∏
j=1

(b
(1)
j )s1 . . .

qn∏
j=1

(b
(n)
j )sn

∏̀
j=1

(αj)s1+...+sn

m1∏
j=1

(β
(1)
j )s1 . . .

mn∏
j=1

(β
(n)
j )sn

,

and, for convergence of the multiple hypergeometric series in (2.9),

When 1 + `+mk − p− qk > 0, k = 1, . . . , n

then |x1| <∞, ..., |xn| <∞.

When 1 + `+mk − p− qk = 0, k = 1, . . . , n; p > `

then |x1|
1

p−` + . . .+ |xn|
1

p−` < 1.

When 1 + `+mk − p− qk = 0, k = 1, . . . , n; p 5 `

then max{|x1|, . . . , |xn|} < 1.
For absolutely and conditionally convergence of above multiple series (2.9), the readers and researchers
can refer a beautiful paper of Hai et al. [8, pp.113-114, Theorums 4, 5 and 6], when x1, x2, ..., xn ∈ {−1, 1}.
Niukkanen [19] discovers several possible applications of such multiple hypergeometric functions (2.9).

For positive integersm1,m2,m3, . . . ,mr (r ≥ 1), the following multiple series identity [31, p.102, Equation
(16)], holds true:

∞∑
n=0

( ∞∑
k1=0

∞∑
k2=0

. . .
∞∑
kr=0

Φ(k1, k2, . . . , kr;n)

)

=
∞∑
n=0

k1m1+k2m2+...+krmr≤n∑
k1,k2,...,kr=0

Φ(k1, k2, . . . , kr;n−m1k1 −m2k2 − . . .−mrkr)

 , (2.10)

provided that the above multiple series are absolutely convergent.

The paper considers Kampé de Fériet and related (generalized) hypergeometric functions at special
(constants) arguments implied by Mellin transforms of special ordinary harmonic Polylogarithm. Some
of the integrals are related to Mellin transforms of Nielsen integrals.

The present article is motivated by the work of the researchers: Blümlein et.al [4], [5], Kölbig et.al [10],
[11], [12], Nielsen [18], Qureshi-Baboo [22], Remiddi et.al [24] and Vermaseren [34], see also sharma et.al
[25], [26] and Tyagi et.al [33].

• In sections 3 and 4, we provide the analytical solution of the logarithmic integral:
∫ 1

0
zm(`n[1− z])k(`n[1+

z])`dz in terms of multi-variable Kampé de Fériet function and higher harmonic sums.

5
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• In section 5, we also yield the solution of Nielsen-type integrals and related integrals:
∫ 1

0
1
z [`n(z)]n−1[`n(1−

zx)]p[`n(1 + zx)]qdz in terms of multi-variable Kampé de Fériet function with suitable convergence
conditions.

• In section 6, we evaluate special integrals:
∫ 0

−1
(`n[1+z])m

zn dz,
∫ 1

0
(`n[1+z])pm

zn dz in terms of generalized
hypergeometric functions using series rearrangement technique.

• In section 7, we obtain the solution of the general integral:
∫ b
a

(`n[1+z])c

zd
dz in terms of Kummer’s

confluent hypergeometric function using incomplete Gamma function

3. Evaluation of
∫ 1

0 zm(`n[1− z])k(`n[1 + z])`dz in terms of multi-
variable Kampé de Fériet function ; where k, ` ∈ N and m ∈ C

Theorem 3.1. The following result holds true:

L1 =

∫ 1

0

zm(`n[1− z])k(`n[1 + z])`dz =
(−1)k

(1 +m+ k + `)
×

× F 1:2;...;2;2;...;2
1:1;...;1;1;...;1


1 +m+ k + ` :

k︷ ︸︸ ︷
1, 1; . . . ; 1, 1;

`︷ ︸︸ ︷
1, 1; ...; 1, 1;

1, ..., 1︸ ︷︷ ︸
k

,−1, ...,−1︸ ︷︷ ︸
`

2 +m+ k + ` : 2 ; ... ; 2︸ ︷︷ ︸
k

; 2 ; ... ; 2︸ ︷︷ ︸
`

;

 , (3.1)

where <(m+ k + `) 6= −1,−2,−3, ..... .

Remark: In view of the theorem of H
,
ai et al.[8, pp 113–114, Theorem 4, Equations (3.1), (3.2) and

(3.3)], the right hand side (i.e. multiple hypergeometric series) of equation (3.1) is absolutely convergent
since arguments ∈ {−1, 1}.
Proof: Since

`n(1 + z) = −
∞∑
q=1

(−1)qzq

q
; − 1 < z ≤ 1,

`n(1− z) = −
∞∑
p=1

zp

p
; − 1 ≤ z < 1.

Therefore

L1 =

∫ 1

0

zm(`n[1− z])k(`n[1 + z])`dz

=

∫ 1

0

z
m

− ∞∑
p1=1

zp1

p1

− ∞∑
p2=1

zp2

p2

 ...

− ∞∑
pk=1

zpk

pk

− ∞∑
q1=1

(−1)q1zq1
q1

− ∞∑
q2=1

(−1)q2zq2
q2

 ....

− ∞∑
q`=1

(−1)q`zq`
q`

 dz

= (−1)k+`
∞∑
p1=1

∞∑
p2=1

...
∞∑

pk=1

1

p1p2...pk

∞∑
q1=1

∞∑
q2=1

...
∞∑
q`=1

(−1)q1+q2+...+q`

q1q2...q`

∫ 1

0

zm+p1+p2...+pk+q1+q2+...+q`dz

= (−1)k+`
∞∑
p1=1

∞∑
p2=1

...
∞∑

pk=1

1

p1p2...pk

∞∑
q1=1

∞∑
q2=1

...
∞∑
q`=1

(−1)q1+q2+...+q`

q1q2...q`
×

6
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× 1

(1 +m+ p1 + p2...+ pk + q1 + q2 + ...+ q`)

= (−1)k
∞∑
p1=0

∞∑
p2=0

...
∞∑

pk=0

1

(1 + p1)(1 + p2)...(1 + pk)

∞∑
q1=0

∞∑
q2=0

...
∞∑
q`=0

(−1)q1+q2+...+q`

(1 + q1)(1 + q2)...(1 + q`)
×

× 1

{(1 +m+ k + `) + (p1 + p2 + ...+ pk + q1 + q2 + ...+ q`)}

=
(−1)k

(1 +m+ k + `)

∞∑
p1=0

∞∑
p2=0

...
∞∑

pk=0

∞∑
q1=0

∞∑
q2=0

...
∞∑
q`=0

(1)p1(1)p2 ...(1)pk
(2)p1(2)p2 ....(2)pk

(1)q1(1)q2 ...(1)q`
(2)q1(2)q2 ....(2)q`

×

× (1 +m+ k + `)p1+p2+...+pk+q1+q2+...+q`
(2 +m+ k + `)p1+p2+...+pk+q1+q2+...+q`

(1)p1+p2+...+pk(−1)q1+q2+...+q`

=
(−1)k

(1 +m+ k + `)

∞∑
p1=0

∞∑
p2=0

...
∞∑

pk=0

∞∑
q1=0

∞∑
q2=0

...
∞∑
q`=0

(1)p1(1)p2 ...(1)pk
(2)p1(2)p2 ....(2)pk

(1)q1(1)q2 ...(1)q`
(2)q1(2)q2 ....(2)q`

×

× (1)p1(1)p2 ...(1)pk
p1!p2!....pk!

(1)q1(1)q2 ...(1)q`
q1!q2!....q`!

×

× (1 +m+ k + `)p1+p2+...+pk+q1+q2+...+q`
(2 +m+ k + `)p1+p2+...+pk+q1+q2+...+q`

(1)p1+p2+...+pk(−1)q1+q2+...+q` .

Now applying the definition (2.9) of multi-variable extension of Kampé de Fériet function, we obtain the
right hand side of the integral L1.

4. Evaluation of
∫ 1

0 zm(`n[1− z])k(`n[1 + z])`dz in terms of har-
monic sums; where k, ` and m ∈ N

Theorem 4.1. The following results hold true:
Case I: When ` ≥ 2, then

L2 =

∫ 1

0

zm(`n[1− z])k(`n[1 + z])`dz

= (−1)kk!
∞∑
q1=0


q2+q3+...+q`≤q1∑
q2,q3,...q`=0

(−1)q1

S1, ..., 1︸ ︷︷ ︸
k

(1 +m+ `+ q1)

(1 + q1 − q2 − q3 − ...− q`)(1 + q2)...(1 + q`)(1 +m+ `+ q1)

 .

(4.1)
Case II: When ` = 1, then

L3 =

∫ 1

0

zm(`n[1− z])k(`n[1 + z])dz

= (−1)kk!

∞∑
q=0

 (−1)q

(1 + q)(2 +m+ q)
S1, ..., 1︸ ︷︷ ︸

k

(2 +m+ q)

 .

7
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Proof of case I: Since `n(1 + z) = −
∑∞
q=1

(−1)q zq

q ; − 1 < z ≤ 1, therefore

L2 =

∫ 1

0

zm(`n[1− z])k(`n[1 + z])`dz

= (−1)`
∞∑
q1=1

∞∑
q2=1

...
∞∑
q`=1

(−1)q1+q2+...+q`

q1q2...q`

∫ 1

0

zm+q1+q2+...+q`(`n[1− z])kdz.

Now using the integral (2.6), we have

L2 = (−1)`
∞∑
q1=1

∞∑
q2=1

...
∞∑
q`=1

(−1)q1+q2+...+q`

q1q2...q`
×

× (−1)k k!

(1 +m+ q1 + q2 + ...+ q`)
S1, ..., 1︸ ︷︷ ︸

k

(1 +m+ q1 + q2 + ...+ q`) .

Now replacing q1 by 1 + q1, q2 by 1 + q2, q3 by 1 + q3, ... and q` by 1 + q`, we obtain

L2 = (−1)`+kk!

∞∑
q1=0

( ∞∑
q2=0

...

∞∑
q`=0

(−1)`+q1+q2+...+q`

(1 + q1)(1 + q2)...(1 + q`)(1 +m+ `+ q1 + q2 + ...+ q`)
×

×S1, ..., 1︸ ︷︷ ︸
k

(1 +m+ `+ q1 + q2 + ...+ q`)

 .

Now replacing q1 by q1 − q2 − q3 − ... − q` and applying multiple series identity (2.10), we get the right
hand side of assertion (4.1). Similarly we can derive case second when ` = 1.
Some deductions of case I:
(i): When k = 1 and ` ≥ 2, then ∫ 1

0

zm(`n[1− z])(`n[1 + z])`dz

=
∞∑
q1=0

(
q2+q3+...+q`≤q1∑
q2,q3,...q`=0

(−1)1+q1
S1 (1 +m+ `+ q1)

(1 + q1 − q2 − q3 − ...− q`)(1 + q2)...(1 + q`)(1 +m+ `+ q1)

)
.

(ii): When k = 2 and ` ≥ 2 and applying the harmonic series relation (2.6), we have∫ 1

0

zm(`n[1− z])2(`n[1 + z])`dz

=
∞∑
q1=0

(
q2+q3+...+q`≤q1∑
q2,q3,...q`=0

(−1)q1
{S2

1 (1 +m+ `+ q1) + S2 (1 +m+ `+ q1)}
(1 + q1 − q2 − q3 − ...− q`)(1 + q2)...(1 + q`)(1 +m+ `+ q1)

)
.

(iii): When k = 3 and ` ≥ 2 and applying the harmonic series relation (2.7), we get∫ 1

0

zm(`n[1− z])3(`n[1 + z])`dz

=
∞∑
q1=0

(
q2+q3+...+q`≤q1∑
q2,q3,...q`=0

(−1)1+q1
{S3

1 (β) + 3S1 (β)S2 (β) + 2S3 (β)}
(1 + q1 − q2 − q3 − ...− q`)(1 + q2)...(1 + q`)(1 +m+ `+ q1)

)
,

8
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where β = 1 +m+ `+ q1.
(iv): When k = 4 and ` ≥ 2 and applying the harmonic series relation (2.8), we obtain∫ 1

0

zm(`n[1− z])4(`n[1 + z])`dz

=
∞∑
q1=0

(
q2+q3+...+q`≤q1∑
q2,q3,...q`=0

(−1)q1{6S4 (β) + 3S2
2 (β) + 8S3 (β)S1 (β) + 6S2 (β)S2

1 (β) + S4
1 (β)}

(1 + q1 − q2 − q3 − ...− q`)(1 + q2)...(1 + q`)(1 +m+ `+ q1)

)
,

where β = 1 +m+ `+ q1.

Some deductions of case II:
(a): When k = 1 and ` = 1, then∫ 1

0

zm(`n[1− z])(`n[1 + z])dz =
∞∑
q=0

(
(−1)1+q

(1 + q)(2 +m+ q)
S1 (2 +m+ q)

)
.

(b): When k = 2 and ` = 1, then∫ 1

0

zm(`n[1− z])2(`n[1 + z])dz =
∞∑
q=0

(
(−1)q{S2

1 (2 +m+ q) + S2 (2 +m+ q)}
(1 + q)(2 +m+ q)

)
.

(c): When k = 3 and ` = 1, then ∫ 1

0

zm(`n[1− z])3(`n[1 + z])dz

=
∞∑
q=0

(
(−1)1+q

(1 + q)(2 +m+ q)
{S3

1 (λ) + 3S1 (λ)S2 (λ) + 2S3 (λ)}
)
,

where λ = 2 +m+ q.
(d): When k = 4 and ` = 1, then ∫ 1

0

zm(`n[1− z])4(`n[1 + z])dz

=
∞∑
q=0

(
(−1)q

(1 + q)(2 +m+ q)
{6S4 (λ) + 3S2

2 (λ) + 8S3 (λ)S1 (λ) + 6S2 (λ)S2
1 (λ) + S4

1 (λ)}
)
,

where λ = 2 +m+ q.

5. Evaluation of Nielsen-type integrals and related integrals in
terms of multi-variable Kampé de Fériet function; where
n, p ∈ N and q ∈ N0

Theorem 5.1. The following result for Nielsen-type integrals holds true:

Sn,p,q(x) =
(−1)n+p+q−1

(n− 1)!p!q!

∫ 1

0

1

z
[`n(z)]n−1[`n(1− zx)]p[`n(1 + zx)]qdz

=
(−1)qxp+q

(p+ q)np!q!
×
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× Fn:2;...;2;2;...;2n:1;...;1;1;...;1



n︷ ︸︸ ︷
p+ q, . . . , p+ q :

p︷ ︸︸ ︷
1, 1; . . . ; 1, 1;

q︷ ︸︸ ︷
1, 1; ...; 1, 1;

x, ..., x︸ ︷︷ ︸
p

,−x, ...,−x︸ ︷︷ ︸
q

1 + p+ q, . . . , 1 + p+ q︸ ︷︷ ︸
n

: 2 ; ... ; 2︸ ︷︷ ︸
p

; 2 ; ... ; 2︸ ︷︷ ︸
q

;

 , (5.1)

(
|x| ≤ 1 ; n, p ∈ N ; q ∈ N0

)
.

Note: Sn,p,0(x) ≡ Sn,p(x) ; Sn−1,1(x) ≡ Lin(x)
and Kölbig integrals[10, p.647, Equation (2)]:∫ 1

0

z−1[`n(z)]n−1[`n(1− z)]pdz = (−1)n+p−1(n− 1)!p!Sn,p(1).

Proof
Since

`n(1− z) = −
∞∑
r=1

zr

r
; − 1 ≤ z < 1,

`n(1 + z) = −
∞∑
s=1

(−1)szs

s
; − 1 < z ≤ 1.

Therefore

Sn,p,q(x) =
(−1)n+p+q−1

(n− 1)!p!q!

∫ 1

0

1

z
[`n(z)]n−1[`n(1− zx)]p[`n(1 + zx)]qdz

=
(−1)n+p+q−1

(n− 1)!p!q!

∫ 1

0

1

z
[`n(z)]

n−1

− ∞∑
r1=1

zr1xr1

r1

 ...

− ∞∑
rp=1

zrpxrp

rp

− ∞∑
s1=1

(−1)s1zs1xs1

s1

 ...

− ∞∑
sq=1

(−1)sq zsqxsq

sq

 dz

(5.2)

=
(−1)n−1

(n− 1)!p!q!

∞∑
r1=1

...
∞∑
rp=1

xr1+...+rp

(r1)...(rp)

∞∑
s1=1

...
∞∑
sq=1

(−1)s1+...+sqxs1+...+sq

(s1)...(sq)
×

×
∫ 1

0

zr1+...+rp+s1+...+sq−1[`n(z)]n−1dz

Now using the result (2.8), we get

Sn,p,q(x) =
1

p!q!

∞∑
r1=1

...
∞∑
rp=1

∞∑
s1=1

...
∞∑
sq=1

(−1)s1+...+sqxr1+...+rp+s1+...+sq

(r1 + ...+ rp + s1 + ...+ sq)n(s1)...(sq)(r1)...(rp)
.

Now replacing r1 by 1 + r1, r2 by 1 + r2, ..., rp by 1 + rp, and s1 by 1 + s1, s2 by 1 + s2, ..., sq by 1 + sq,
we obtain

Sn,p,q(x) =
1

p!q!

∞∑
r1=0

...
∞∑
rp=0

∞∑
s1=0

...
∞∑
sq=0

(−1)q+s1+...+sqxp+q+r1+...+rp+s1+...+sq

{(p+ q) + (r1 + ...+ rp + s1 + ...+ sq)}n
×

×
(1)r1(1)r2 ...(1)rp(1)s1(1)s2 ...(1)sq
(2)r1(2)r2 ...(2)rp(2)s1(2)s2 ...(2)sq

.

Now applying the definition (2.9) of multi-variable extension of Kampé de Fériet function, we get the
required result (5.1).
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6. Evaluation of
∫ 0

−1
(`n[1+z])m

zn dz,
∫ 1

0
(`n[1+z])m

zn dz in terms of gener-
alized hypergeometric functions; where
m,n ∈ N

Theorem 6.1. The following results hold true:
When m ≥ n, then

L4 =

∫ 0

−1

(`n[1 + z])m

zn
dz = (−1)m−nm! m+2Fm+1


m+1︷ ︸︸ ︷

1, 1, . . . , 1, n;

2, 2, . . . , 2︸ ︷︷ ︸
m+1

;
1

 , (6.1)

When m ≥ 2, then

L5 =

∫ 1

0

(`n[1 + z])mdz = (−1)m+1m! + 2(`n[2])m 2F0

[
−m, 1;
−;

(`n[2])−1
]
, (6.2)

When m ≥ n ≥ 2, then

L6 =

∫ 1

0

(`n[1 + z])m

zn
dz =

(m)!

(n− 1)m+1 m+1Fm


m+1︷ ︸︸ ︷

n− 1, n− 1, . . . , n− 1;

n, n, . . . , n︸ ︷︷ ︸
m

;
1

−

−
m∑
k=0

k!
(
m
k

)
(`n[2])m−k

2n−1(n− 1)k+1 k+1Fk


k+1︷ ︸︸ ︷

n− 1, n− 1, . . . , n− 1;

n, n, . . . , n︸ ︷︷ ︸
k

;

1

2

 . (6.3)

Independent proof of the integral (6.1):
The integral (6.1) can be solved by substituting 1 + z = e−t and using the result (2.7) of Laplace
transforms.
Independent proof of the integral (6.2):

Suppose L5 =

∫ 1

0

(`n[1 + z])mdz.

Put 1 + z = et, then we have

L5 =

∫ `n[2]

0

tmetdt.

Now integrating by parts, we get

L5 =

[(
m

0

)
(−1)0tmet +

(
m

1

)
(−1)1tm−1et +

(
m

2

)
(−1)2tm−2et2! +

(
m

3

)
(−1)3tm−3et3! + . . .

+

(
m

m− 1

)
(−1)m−1tet(m− 1)! +

(
m

m

)
(−1)metm!

]`n[2]
0

L5 = (−1)m+1m! + 2
m∑
k=0

(
m

k

)
(`n[2])m−k(−1)kk!
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or L5 = (−1)m+1m! + 2(`n[2])m 2F0

[
−m, 1;
−;

(`n[2])−1
]
.

Independent proof of the integral (6.3):

Suppose L6 =

∫ 1

0

(`n[1 + z])m

zn
dz

Now substitute 1 + z = et, then we have

L6 =

∫ `n[2]

0

tmet

(et − 1)n
dt =

∫ `n[2]

0

tme−t(n−1)(1− e−t)−ndt =
∞∑
r=0

(n)r
r!

∫ `n[2]

0

tme−t(n+r−1)dt

Further, integrate by parts with α = n+ r − 1, we get

L6 =
∞∑
r=0

(n)r
r!

[
−
(
m

0

)
tme−αt

(α)
−
(
m

1

)
tm−1e−αt

(α)2
−
(
m

2

)
tm−2e−αt2!

(α)3
−
(
m

3

)
tm−3e−αt3!

(α)4
− . . .

−
(

m

m− 1

)
te−αt(m− 1)!

(α)m
−
(
m

m

)
e−αtm!

(α)m+1

]`n[2]
0

= −
∞∑
r=0

(n)r
r!

(
m

0

)
tme−αt

(α)
−
∞∑
r=0

(n)r
r!

(
m

1

)
tm−1e−αt

(α)2
−
∞∑
r=0

(n)r
r!

(
m

2

)
tm−2e−αt2!

(α)3
− . . .

−
∞∑
r=0

(n)r
r!

(
m

m− 1

)
`n[2](m− 1)!

2α(α)m
−
∞∑
r=0

(n)r
r!

(m)!

2α(α)m+1
+
∞∑
r=0

(n)r
r!

(m)!

(α)m+1

=

∞∑
r=0

(n)r
r!

(m)!

(n+ r − 1)m+1
−
∞∑
r=0

(n)r
r!

[
m∑
k=0

k!
(
m
k

)
(`n[2])m−k

2n+r−1(n+ r − 1)k+1

]

=
∞∑
r=0

{(n− 1)r}m+1

(n− 1)m+1r!

(m)!

{(n)r}m
−

m∑
k=0

k!
(
m
k

)
(`n[2])m−k

2n−1

∞∑
r=0

(n)r
2r(n+ r − 1)k+1r!

.

Now using the well-known definition of generalized hypergeometric function pFq, we obtain the desired
result.

7. Evaluation of
∫ b
a

(`n[1+z])c

zd
dz in terms of Kummer’s confluent

hypergeometric functions; where b > a > 0, <(d) > 1, <(c+1) >
0

Theorem 7.1. The following general result holds true:

L7 =

∫ b

a

(`n[1 + z])c

zd
dz =

∞∑
r=0

(d)r
r!

{
(`n[1 + b])c+1

c+ 1
1F1

[
c+ 1;
c+ 2;

− (d+ r − 1)`n[1 + b]

]
−

− (`n[1 + a])c+1

c+ 1
1F1

[
c+ 1;
c+ 2;

− (d+ r − 1)`n[1 + a]

]}
, (7.1)

where <(c+ 1) > 0 and <(d) > 1.
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Independent proof of the integral (7.1):

Suppose L7 =

∫ b

a

(`n[1 + z])c

zd
dz

Now substitute 1 + z = et, then we have

L7 =

∫ `n[1+b]

`n[1+a]

tce−t(d−1)(1− e−t)−ddt =
∞∑
r=0

(d)r
r!

∫ `n[1+b]

`n[1+a]

tce−t(d+r−1)dt.

Further put t(d+ r − 1) = x, we get

L7 =
∞∑
r=0

(d)r
r!(d+ r − 1)c+1

∫ (d+r−1)`n[1+b]

(d+r−1)`n[1+a]
e−xxcdx

L7 =
∞∑
r=0

(d)r
r!(d+ r − 1)c+1

{∫ (d+r−1)`n[1+b]

0

e−xxcdx−
∫ (d+r−1)`n[1+a]

0

e−xxcdx

}
.

Now using the definition of incomplete Gamma function, we obtain

L7 =
∞∑
r=0

(d)r
r!(d+ r − 1)c+1

{γ(c+ 1, (d+ r − 1)`n[1 + b])− γ(c+ 1, (d+ r − 1)`n[1 + a])} .

Now expressing incomplete Gamma in terms of hypergeometric notation (1.1), we get the right hand
side of equation (7.1) which is always convergent, in view of convergence conditions of hypergeometric
function pFq(z) when p = q then |z| <∞.

8. Concluding remarks and Future scope

In this paper we have obtained some results involving hypergeometric functions and harmonic sums. We
conclude our present investigation by observing that several other theorems of the similar types integrals
related with other mathematical functions, different from the following integrals, are obtained in an
analogous manner: ∫ b

a

(`n[1 + z])c

zd
dz;

∫ −b
−a

(`n[1− z])c

zd
dz =

1

(−1)d+1

∫ b

a

(`n[1 + z])c

zd
dz;

∫ 1

0

zm(`n[1− z])k(`n[1 + z])`dz = (−1)m
∫ 0

−1
zm(`n[1 + z])k(`n[1− z])`dz

and generalized Nielsen integrals with special cases.
Moreover the results derived in this paper are quite significant and are expected to be beneficial for
the researchers in the field of applied mathematics, mathematical sciences and other branches of science
and engineering. The interested readers and researchers can consult an appendix (Section 7 on Mellin
Transforms) of the beautiful paper by ”Blümlein and Kurth” [4, pp.27-39] for the Mellin integrals, which
are different from the present paper.
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ABSTRACT

The main objective of this paper is to solve Fredholm integral equations (IEs) that involve S-
function, generalized extended Mittag-Leffler function (GEMLF), and incomplete ℵ-function as the
kernel. These types of integral equations appear frequently in applied mathematics, particularly
in mathematical physics, engineering, and finance. To solve these integral equations, we employ
two powerful mathematical tools, namely fractional calculus (FC) and integral transforms. Specif-
ically, we use the Weyl operator and Mellin transform to solve the integral equation associated
with S-functions, GEMLF, and incomplete ℵ-functions. These techniques allow us to express the
solution in a closed form, which is essential for practical applications. Moreover, we present several
special cases of the solutions obtained, which provide additional insights into the behavior of the
solutions. These results are significant for the study of integral equations, as they can be used to
derive several known results. Furthermore, the techniques used in this study can be applied to
other integral equations that involve different types of functions.

Keywords: Integral equations of Fredholm kind, S- function, generalized extended Mittag-Leffler
function, incomplete ℵ- functions, Mellin inversion theorem, Weyl fractional integral operator,
Mellin transform.

1. Introduction and Preliminaries

Integral equation is an essential tool in solving problems related to science and engineering. The
equations are highly versatile and are used in a diverse range of fields. In the problems related
to heat and mass transfer, these equations are used to model and predict the behavior of thermal
and fluid systems, such as the flow of fluids through pipes and the transfer of heat in buildings. In
scattering theory, these equations are used to study how particles or waves interact with each other
and with their environment. In the kinetic theory of gases, they are used to describe the behavior
of gases on a microscopic level, including the motion and collisions of individual gas molecules.
In integral geometry, these equations are used to study how geometric shapes interact with each

Key words: Integral equations of Fredholm kind, S- function, generalized extended Mittag-Leffler function, in-
complete ℵ- functions, Mellin inversion theorem, Weyl fractional operator, Mellin transform.
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other and with their surroundings. In construction science, they are used to understand how
materials behave under different conditions, to optimize the design and construction of buildings
and other structures. Many researchers have done notable work in these fields [3–5,22,26–32,35,36].

Among the different types of integral equations, the Fredholm integral equation is particularly
significant in the study of special functions. Incomplete special functions have a unique role in
distribution theory, mathematical modeling, probability theory, and other fields. Its properties and
applications have been extensively studied by many authors [1, 6, 9–12,16,17,20,33,34].

A specific area of focus for mathematicians has been the study of Fredholm integral equations
involving incomplete hypergeometric functions, incomplete I-functions, incomplete H-functions,
and incomplete H-functions as kernels. Singh et. al. [37] have done very novel work on applica-
tions of the fractional differential equations associated with integral operators involving ℵ-function
in the kernel. Motivated by the work mentioned above, we have now turned our attention to inves-
tigating the Fredholm integral equation that involves the multiplication of incomplete ℵ-functions,
GEMLF, and S-function as the kernel. This research will advance our understanding of the prop-
erties and applications of these functions and their role in solving complex problems in various fields.

Definition 1: L. Euler [24] investigated the Gamma function as the extension of the factorial
operation given below:

Γ(n+ 1) = n!. (1.1)

The Gamma function is defined by a convergent improper integral as:

Γ(θ) =


∫∞

0 e−ttθ−1dt, (R(θ) > 0)

Γ(θ+ω)
(θ)ω

, (θ ∈ C \ Z−0 ;ω ∈ N0).

(1.2)

where (θ)ω is the Pochhammer symbol [2] and is defined as:

(θ)ω =
Γ(θ + ω)

Γ(θ)
=

{
1, (ω = 0; θ ∈ C \ {0})
θ(θ + 1) . . . (θ + k − 1), (ω = k ∈ N; θ ∈ C).

(1.3)

Definition 2: The incomplete gamma function [13] is widely applicable in various fields, including
physics and medical sciences. The properties of the real incomplete gamma functions are commonly
used in complex analysis.
The upper and lower incomplete gamma functions are defined as:

γ(u, x) =

∫ x

0
vu−1e−vdv (<(u) > 0;x ≥ 0), (1.4)

and

Γ(u, x) =

∫ ∞
x

vu−1e−vdv (x ≥ 0;<(u) > 0), (1.5)

where

γ(u, x) + Γ(u, x) = Γ(u) (R(u) > 0). (1.6)
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Definition 3: Sdland et. al. [23] have introduced a new concept called the ℵ-function. This func-
tion has recently been expanded upon by Bansal et. al. [19], who have introduced the incomplete
ℵ-function. This new function is a generalization of the original ℵ-function, which leads to further
advancements in mathematical theory and applications.

(Γ)ℵM,N
Pi,Qi,δi;R

[z] = (Γ)ℵM,N
Pi,Qi,δi,R

z
∣∣∣∣∣∣

(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi


=

1

2πi

∫
L

Φ(ν, x)z−νdν,

(1.7)

where z 6= 0 and

Φ(ν, x) =
Γ (1− b1 −B1ν, x)

∏M
j=1 Γ (aj + Ajν)

∏N
j=2 Γ (1− bj −Bjν)∑R

i=1 δi

[∏Qi
j=M+1 Γ (1− aji − Ajiν)

∏Pi
j=N+1 Γ (bji + Bjiν)

] . (1.8)

(γ)ℵM,N
Pi,Qi,δi;R

[z] = (γ)ℵM,N
Pi,Qi,δi,R

z
∣∣∣∣∣∣

(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi


=

1

2πi

∫
L

Ψ(ν, x)z−νdν,

(1.9)

where where z 6= 0 and

Ψ(ν, x) =
γ (1− b1 −B1ν, x)

∏M
j=1 Γ (aj + Ajν)

∏N
j=2 Γ (1− bj −Bjν)∑R

i=1 δi

[∏Qi
j=M+1 Γ (1− aji − Ajiν)

∏Pi
j=N+1 Γ (bji + Bjiν)

] . (1.10)

The both incomplete ℵ-functions

(
(Γ)ℵM,N

Pi,Qi,δi;R
[z] and (γ)ℵM,N

Pi,Qi,δi;R
[z]

)
given by Eq. (1.7) and

Eq. (1.9) exist for all x ≥ 0 with the following conditions:

• The contour L extends from C − ι∞ to C + ι∞ on the complex plane, C ∈ <.

• Poles of Γ (1− bj −Bjζ), j = 2, N never match exactly with the poles of Γ (aj + Ajζ),
j = 1,M .

• The parameters M,N,Pi, Qi are non negative integers that satisfy 0 ≤ N ≤ Pi, 0 ≤M ≤ Qi
and i = 1, R.

• Parameters Bj,Aj,Bji,Aji are positive real numbers and bj, aj, bji, aji are complex numbers.

• All the poles of Φ(ζ, y) and Ψ(ζ, y) are supposed to be simple, and the null product is
considered as unity.

•
Fi ≥ 0, | arg(z)| < π

2
Fi and R (Gi) + 1 < 0, i = 1, R, (1.11)
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where

Fi =
N∑
j=1

Bj +
M∑
j=1

Aj −

 Pi∑
j=N+1

Bji +

Qi∑
j=M+1

Aji

 , (1.12)

Gi =
M∑
j=1

aj −
N∑
j=1

bj +

 Qi∑
j=M+1

Bji −
Pi∑

j=N+1

Aji

+
1

2
(Pi −Qi) . (1.13)

Definition 4: GEMLF is defined by Bansal et al. [18] as:

Eφ;ρ
µ,λ

(
y; ξ, ψ, ω

)
=
∞∑
m=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

ym

(m)!
, (1.14)

(ξ ≥ 0,<(ρ) > <(φ) > 0,<(µ) > 0,<(λ) > 0).

Here Bψ,ω
p (α, β) is generalized beta function [8].

Definition 5: The S-function [7] is defined as follows:

Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq; y

]
=
∞∑
n=0

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

yn

n!
, (1.15)

where the κ-Pochhammer symbol [25] is defined as:

(ε)n,κ =


Γκ(κn+ε)

Γκ(ε) ,
(
κ ∈ <, ε ∈ C

{0}

)
ε(ε+ κ) . . . (ε+ (n− 1)κ), (n ∈ N, ε ∈ C).

(1.16)

Definition 6: The Mellin transforms of incomplete ℵ-functions are investigated by Bansal et.
al. [19] in following manner:

M

(Γ)ℵM,N
Pi,Qi,δi;R

kzµ
∣∣∣∣∣∣

(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 ; p

 =
k−p/µ

µ
Φ

(
p

µ
, x

)
,

(1.17)
and

M

(γ)ℵM,N
Pi,Qi,δi;R

kzµ
∣∣∣∣∣∣

(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 ; p

 =
k−p/µ

µ
Ψ

(
p

µ
, x

)
,

(1.18)
where Φ and Ψ are defined by Eq.(1.8) and Eq. (1.10) respectively.

Definition 7: The Weyl fractional integral operator of order β [14] is defined as:

W−β{F(z)} =
1

Γ(β)

∫ ∞
z

(t− z)β−1F(z)dt, (<(β) > 0,F ∈ A), (1.19)

here A indicates the space of all functions F defined on R = [0,∞) [15].
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2. Solution of Integral Equation of Fredholm Kind Involving In-
complete ℵ-function, GEMLF and S-Function

In this section, we will be applying the Mellin transform method as well as the Weyl fractional
integral operator to solve the Fredholm integral equation which involves incomplete ℵ-function,
GEMLF, and S-function. By utilizing these mathematical techniques, we aim to provide a com-
prehensive and precise solution to the problem.

Lemma 1. Let

(i) The parameters M,N,Pi, Qi are non negative integers that satisfy 0 ≤ N ≤ Pi, 0 ≤M ≤ Qi
and i = 1, R.

(ii) <(α− s) > 0; R (Gi) + 1 < 0 (i = 1, R) where Gi is given by Eq. (1.13).

(iii) x ≥ 0, β > 0 and α ∈ C.

(iv) | arg(C)| < π
2Fi where Fi is given by Eq. (1.12).

Then,

W s−α

{
u−αEφ;ρ

µ,λ

(
u; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq;u

]

× (Γ)ℵM,N
Pi,Qi,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

}

= u−s
∞∑
m=0

∞∑
n=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

um+n

m!n!

× (Γ)ℵM,N+1
Pi+1,Qi+1,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (1− s+m+ n, β), (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi
, (1− α+m+ n, β)

 .
(2.1)

Proof. To attain the desired result, we commence our process by expressing the incomplete ℵ-
function in terms of the Mellin Barne contour integral. Afterward, we proceed to expand the
GEMLF and S-function in series form and then change the order of integral and summation.
At last, we apply the Weyl operator, interpret the result using the definition of the incomplete
ℵ-function, and get the desired result.

Lemma 2. Let

(i) The parameters M,N,Pi, Qi are non negative integers that satisfy 0 ≤ N ≤ Pi, 0 ≤M ≤ Qi
and i = 1, R.

(ii) <(α− s) > 0; R (Gi) + 1 < 0 (i = 1, R) where Gi is given by Eq. (1.13).
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(iii) x ≥ 0, β > 0 and α ∈ C.

(iv) | arg(C)| < π
2Fi where Fi is given by Eq. (1.12).

Then,

W s−α

{
u−αEφ;ρ

µ,λ

(
u; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g, g2, . . . , gp;h1, h2, . . . , hq;u

]

× (γ)ℵM,N
Pi,Qi,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

}

= u−s
∞∑
m=0

∞∑
n=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

um+n

m!n!

× (γ)ℵM,N+1
Pi+1,Qi+1,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (1− s+m+ n, β), (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi
, (1− α+m+ n, β)

 .
(2.2)

Proof. To attain the desired result, we commence our process by expressing the incomplete ℵ-
function in terms of the Mellin Barne contour integral. Afterward, we proceed to expand the
GEMLF and S-function in series form and then change the order of integral and summation.
At last, we apply the Weyl operator, interpret the result using the definition of the incomplete
ℵ-function, and get the desired result.

Theorem 2.1 Let

(i) The parameters M,N,Pi, Qi are non negative integers that satisfy 0 ≤ N ≤ Pi, 0 ≤M ≤ Qi
and i = 1, R

(ii) <(α− s) > 0; R (Gi) + 1 < 0 (i = 1, R) where Gi is given by (1.13)

(iii) x ≥ 0, β > 0 and α ∈ C

Then, the relation given below holds :
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∫ ∞
0

u−s
∞∑
m=0

∞∑
n=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

um+n

m!n!

× (Γ)ℵM,N+1
Pi+1,Qi+1,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (1− s+m+ n, β), (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi
, (1− α+m+ n, β)

 g(u)du

=

∫ ∞
0

u−αEφ;ρ
µ,λ

(
u; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq;u

]

× (Γ)ℵM,N
Pi,Qi,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 Ds−α{g(u)}du,

(2.3)
provided that F ∈ A and y > 0.

Proof. Let I refers to the left-hand side of Eq. (2.3), then

I =

∫ ∞
0

u−s
∞∑
m=0

∞∑
n=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

um+n

m!n!

× (Γ)ℵM,N+1
Pi+1,Qi+1,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (1− s+m+ n, β), (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi
, (1− α+m+ n, β)

 g(u)du

=

∫ ∞
0

g(u)W s−α

{
u−αEφ;ρ

µ,λ

(
u; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq;u

]

× (Γ)ℵM,N
Pi,Qi,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

}du. (using Eq. (2.1))

Using Eq. (1.19) and changing the order of integration, we obtain

I =

∫ ∞
0

t−αEφ;ρ
µ,λ

(
t; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq; t

]

× (Γ)ℵM,N
Pi,Qi,δi,R

C(y
t

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 (∫ t

0

(t− u)α−s−1

Γ(α− s)
g(u)du

)
dt.
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Afterward, by utilizing Riemann-Liouville’s fractional derivative [14], we get

I =

∫ ∞
0

t−αEφ;ρ
µ,λ

(
t; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq; t

]

× (Γ)ℵM,N
Pi,Qi,δi,R

C(y
t

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 Ds−α{g(t)}dt,

which is the right-hand side of Eq. (2.3).

Theorem 2.2 Let

(i) The parameters M,N,Pi, Qi are non negative integers that satisfy 0 ≤ N ≤ Pi, 0 ≤M ≤ Qi
and i = 1, R.

(ii) <(α− s) > 0; R (Gi) + 1 < 0 (i = 1, R) where Gi is given by (1.13).

(iii) x ≥ 0, β > 0 and α ∈ C.

Then, the relation given below holds :∫ ∞
0

u−s
∞∑
m=0

∞∑
n=0

Bψ,ω
ξ (φ+m, ρ− φ)

B(φ, ρ− φ)

(ρ)m
Γ(µm+ λ)

(g1)n(g2)n . . . (gp)n(ε)nτ,κ

(h1)n(h2)n . . . (hq)nΓκ(nσ + η)

um+n

m!n!

× (γ)ℵM,N+1
Pi+1,Qi+1,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (1− s+m+ n, β), (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi
, (1− α+m+ n, β)

 g(u)du

=

∫ ∞
0

u−αEφ;ρ
µ,λ

(
u; ξ, ψ, ω

)
Sσ,η,ε,τ,κ(p,q)

[
g1, g2, . . . , gp;h1, h2, . . . , hq;u

]

× (γ)ℵM,N
Pi,Qi,δi,R

C(y
u

)β ∣∣∣∣∣∣
(b1,B1, x) , (bj ,Bj)2,N , [δi (bji,Bji)]N+1,Pi

(aj ,Aj)1,M , [δi (aji,Aji)]M+1,Qi

 Ds−α{g(u)}du,

(2.4)
provided that F ∈ A and y > 0.

Proof. The proof of this theorem follows a similar process to that of Theorem 2.1.

3. Conclusions

Our research yields significant implications across a wide range of fields. Our methodology involves
the solution of an integral equation of Fredholm kind, which includes S-function, generalized ex-
tended Mittag-Leffler function (GEMLF), and incomplete ℵ-function in the kernel. Specifically, we
have discovered that a vast array of results as derived by authors [12, 21, 34, 35], can be obtained
by setting specific values for different parameters of the S-function, generalized extended Mittag-
Leffler function (GEMLF), and incomplete ℵ-function. As a result, the outcomes presented in this
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article have the potential to contribute to numerous advancements in science and engineering by
providing valuable insights into the behavior of special functions relevant to these fields.
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Abstract: This study considers in depth the flow of the boundary layer of
an incompressible, viscous, and steady Casson fluid through an expanding sur-
face when thermal radiation, heat source, Soret, and Dufour effects are present.
Using suitable similarity transformations, the governing non-linear partial dif-
ferential equations are converted into coupled ordinary differential equations
and then estimated using the MATLAB software bvp4c using a shooting pro-
cess. Variable values of the parameters employed in the current inquiry are
offered, together with solutions for the parameters of momentum, temperature,
concentration, coefficient of local skin friction, and local Nusselt number. It is
observed that the Casson fluid parameter improves fluid velocity and decreases
the temperature. Also, it is found that thermal radiation and the presence of a
heat source/sink increase the temperature of the fluid. We compared the present
investigation with previously published papers and found them harmonious.

Keywords: Casson fluid; Heat source/sink, Thermal radiation; Enlarging
sheet; Soret and Dufour effects.

1 Introduction

A few examples of industries where the viscous non-Newtonian fluid in the
boundary layer province caused by an expanding flat plate has extensive techni-
cal applications include the cooling and drying of paper, aerodynamic extrusion,
production of glass fibres, wire drawing, glass blowing, polymer and metal pro-
cessing industries, and hot rolling.
Nadeem et al. [1] investigated the influences of thermal radiation on a Jeffery
fluid’s boundary layer along a planar sheet that was expanding exponentially.
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They discovered that local skin friction is a declining function of the local suc-
tion parameter, and the heat transfer rate is a reducing function of the suction
parameter and Eckert number while a rising function of the Prandtl number
and radiation parameter. Hiemenz [2] was most likely the first to investigate
2D stagnation flow to transform the NS equations to non-linear ODEs. Crane
[3] conducted ground-breaking research on constant boundary layers caused by
a linearly expanding sheet. Similarity solutions are also permitted for the flow
brought on by stretching sheets, which is significant in extrusion issues. Wang
[4] found similar solutions for the axisymmetric situation. The most common
fluid model nowadays is the Casson fluid, described as a fluid that thins under
shear and has infinite viscosity at zero shear rates. Fredrickson [5] discovered the
Casson fluid’s continuous flow property in a pipe. Boyd et al. [6] analyzed the
oscillatory blood flow while accounting for Casson fluid. They discovered that
Casson and Carreau-Yasuda flow display remarkable changes in the steady flow
compared to equivalent Newtonian-type flows. Casson fluids are non-Newtonian
in nature. The constitutive equation for Casson fluid includes shear stress since
it acts like elastic materials like tomato sauce, jelly, soup, honey, and concen-
trated fruit liquids. Another example of a Casson fluid is human blood. Later
on, the MHD flow of a non-Newtonian fluid caused by an exponentially con-
tracting surface was discovered by Nadeem et al. [7]. They found that the issue
in the provided situation becomes a Newtonian scenario if the fluid parameter
approaches infinity. Casson fluid flow analysis due to a permeable contracting
surface with viscous dissipation was explored by Qasim and Nooren [8]. Bhat-
tacharyya et al. [9] created the critical solution of the magnetohydrodynamic
porous flow of a Casson fluid along an enlarging sheet. This investigation found
that the partial slip strongly affects the velocity. A drop in the mass suction
parameter is shown for the Casson fluid flow as the boundary slip parameter is
raised. Nandy [10] provided a solution for the MHD Casson fluid flow approach-
ing a stagnation point toward a stretched plate in the presence of a partial slip.
To analyse how radiation influenced the fluid mass and heat transfer assessment
of a Casson fluid along an unevenly stretched sheet. Swati [11] used the suc-
tion and blowing effects. She found that the fluid velocity initially falls when
the unsteadiness parameter is raised. Additionally, it is discovered that as the
Casson parameter increases, the fluid temperature rises, the fluid velocity field
is suppressed, and thermal radiation improves the thermal diffusivity of the
fluid, taken into consideration. Peri et al. [12] investigated the dual solutions
of Casson fluid flow over a stretching or shrinking sheet. They demonstrated
that the Dufour number enhances the velocity and temperature throughout the
boundary layer. The concentration boundary layer thickness is enhanced by an
increase in the Soret number. The shrinking ratio reduces the velocity of the
fluid but enhances the concentration. The skin friction, heat and mass transfer
rates increase with the Casson parameter. Many more researchers [13-16] did
pioneer work in analytic solutions of ODEs and PDEs and mathematical mod-
eling. Sushila et al. [17] analyzed a hybrid analytical model for thin film in
fluid dynamics for non-Newtonian fluids. They found that the homotopy per-
turbation Elzaki transform method leads over the Elzaki decomposition method
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since the non-linear problems are solved without utilizing Adomian polynomi-
als. Moreover, Singh et al.[18] discovered computational analysis of Fractional
Lienard’s equation with exponential Memory.

The current paper aims to investigate the Casson fluid flow across a stretched
sheet. The modified similarity equation’s numerical solution is achieved for the
stretching sheet. Plots are provided and analyzed in detail for the emerging
physical parameters incorporated in the suggested problem.

2 Mathematical construction of the problem

Nakamura and Sawada [19] provided a definition of the rheological equation of
Casson fluid flow as given under:

τij =


(
µB + 1√

2π
τy

)
2eij, π > πc(

µB + 1√
2πc

τy

)
2eij, π < πc

, (1)

where µB is used for the Casson fluid’s plastic dynamic viscosity, τy is taken as
the yield stress, π is considered as deformation rate, and it is π = eijeij , where

the component of the deformation at (i, j)
th

position is eij . τc expresses the
critical value of π.
Consider 2D steady and incompressible Casson fluid flow near the stagnation
point on a permeable enlarging plane surface. The direction of the plane surface
is along the X, and the Y axis is taken normal to the surface. The axial velocity
components in the above directions are u and v, respectively. The sheet is
stretched by applying two equal pressures in the x direction immediately to
produce the flow. The plane surface is extended with a linear velocity of the
form uw(x) = cx while preserving the origin fixed, where c is a constant and it
is taken as c > 0 for an expanding surface, for shrinking sheet c < 0 and c = 0
for a static surface.
Under the aforementioned assumptions, for this Casson fluid flow, the stable
boundary layer equations for incompressible stagnation-point flow are given as
follows:

Equation of Continuity:

∂u

∂x
+
∂u

∂y
= 0, (2)

Equation of Momentum:

u
∂u

∂x
+ v

∂u

∂y
= ue

due
dx

+ ν

(
1 +

1

β

)
∂2u

∂y2
+ gβT (T − T∞) , (3)

Equation of Energy:
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u
∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+
DmKT

CsCp

∂2C

∂y2
− 1

ρCp

∂qr
∂y

+
Q0

ρCp
(T − T∞) , (4)

Equation of Concentration:

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+
DmKT

Tm

∂2T

∂y2
−K0 (C − C∞) , (5)

The following are the borderline circumstances for equations (2) to (5):

u = xc, v = 0, T − T∞ = xb, C − C∞ = xd, when y = 0,
u→ xa, T → T∞, C → C∞, as y → ∞.

}
. (6)

where uw (x) = cx is the fluid velocity at the wall and c is a constant,
ue (x) = ax is the ambient fluid velocity where a is a constant, β = µB

√
2πc/τy

symbolizes the Casson fluid parameter, βT is used for the coefficient of thermal
expansion, T expresses the fluid temperature, Tw represents the temperature of
the sheet, T∞ is constant, and it is considered as uniform ambient temperature,
g is taken as gravitational acceleration, αm expresses the effective thermal dif-
fusivity, the mean temperature of fluid is Tm, the effective solutal diffusivity is
Dm, KT is used for the ratio of thermal diffusion, Cp is taken as the specific
heat at constant pressure, and Cs is the concentration susceptibility.
The stream function ψ is defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

where ψ =
√
aνxf (η), dimensionless stream function is f (η) and similarity

variable is η = y
√

a
ν . Solving this, we get the values of velocity components in

both directions are given by

u = xaf ′ (η) ,

v = −
√
aνf (η) . (7)

The Casson fluid temperature and concentration are taken as

θ (η) =
T − T∞
∆T

and ϕ (η) =
C − C∞

∆C
, (8)

where θ (η) and ϕ (η) are dimensionless temperature and concentration respec-
tively. Equations (2) to (5) become the subsequent two-point boundary value
problem when equations (7) and (8) are used:(

1 + β−1
)
f ′′′ + ff ′′ − f ′2 + λθ = −1, (9)

4

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

62 Neemawat et al 59-72



Pr−1

(
1 +

4

3
R

)
θ′′ + fθ′ − f ′θ +Dfϕ

′′ +Qθ = 0, (10)

Sc−1ϕ′′ + fϕ′ − f ′ϕ+ Srθ′′ −Kϕ = 0, (11)

The transformed borderline circumstances are:

f = 0, f ′ = c
a , θ = 1, ϕ = 1 at η = 0,

f ′ → 1, θ → 0, ϕ→ 0 as η → ∞

}
. (12)

where prime (′) indicates differentiation with respect to similarity variable η.
The non-dimensional parameters used in this article are as follows:
λ = gβT b

a2 (Buoyancy parameter), Pr = ν
αm

(Prandtl number), Sc = ν
Dm

(Schmidt number),Df = DmKT (Cw−C∞)
CsCpν(Tw−T∞) (Dufour parameter), Sr = DmKT (Tw−T∞)

Tmν(Cw−C∞)

(Soret parameter), R =
4σ∗T 3

∞
ρCpk∗αm

(Radiation parameter), Q = Q0

aρCp
(Heat

source/sink parameter) and K = K0

a (Chemical reaction parameter).

Significant physical entities of a particular flow field, temperature field, and
concentration are presented graphically and tabularly in terms of skin friction,
local Sherwood number, and Nusselt number, considering engineering and prac-
tical value and uses. These are the three measures of attention in the present
study.
The surface shearing stress is shown by τw and calculated using

τw =

(
µB +

τy√
2πc

)(
∂u

∂y

)
y=0

=

(
µB +

τy√
2πc

)√
a3

ν
xf ′′ (0) , (13)

The term for the local skin-friction coefficient is Cf , and its definition is

Cf =
τw

ρuex2
, (14)

Using equation (13) in equation (14), we get

Re
1/2
x Cf =

(
1 + β−1

)
f ′′ (0) . (15)

The formula for the wall’s rate of heat transmission is

qw = −k
(
∂T

∂y

)
y=0

+(qr)y=0 = −k (Tw − T∞)

√
a

ν
θ′ (0)−16σ∗T 3

∞
3k∗

(Tw − T∞)

√
a

ν
θ′ (0) ,

(16)

The local Nusselt number, represented by the symbol Nux, is defined as

Nux =
xqw

k (Tw − T∞)
, (17)
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Using equations (16) and (17), the local Nusselt number can be expressed as
follows

Nux

Re
1/2
x

= −
(
1 +

4

3
R

)
θ′ (0) . (18)

qm stands for the mass flow at the wall and is defined as

qm = −Ds

(
∂C

∂y

)
y=0

= − (Cw − C∞)Ds

√
a

ν
ϕ′ (0) , (19)

The local Sherwood number is denoted by Shx and is defined as

Shx =
xqm

Ds (Cw − C∞)
, (20)

Using equations (19) and (20), the Sherwood number can be expressed as follows

Shx

Re
1/2
x

= −ϕ′ (0) . (21)

Here Rex = xue

ν is taken as the local Reynolds number.

3 Influence of diverse restrictions on the flow

The given system of coupled ODEs from (9) to (11) with borderline circum-
stances given in equation (12) was solved using the MATLAB coding package
named bvp4c ODEs solver. This portion of the text discusses the effects or influ-
ences of several physical non-dimensional parameters on the profiles of energy,
momentum, concentration, skin friction, and rate of change of heat transfer. To
authorize the outcomes of our numerical method, the values of

(
1 + β−1

)
f ′′(0)

were compared with values obtained by the researchers Peri [12], Bhattacharyya
[20], and Ishak et al. [21] and they are found in very good agreement. Figures
in the form of line graphs from 2 to 10 are used to display the distribution of
axial velocity, temperature, and concentration. The following is a summary of
the findings.
The comparison of the current results to those that have been published is
shown in table 1. It is found to an excellent reliability between the present and
published results. It also confirms the validity of the method used in the present
paper. It can be shown from this table that when stretching parameter values
increase, the local skin friction coefficient decreases.
Table 2 contains tabular values of −θ′ (0) for various stretching/shrinking pa-
rameter values corresponding to specific fixed values of the other considered
parameters. The data show that heat transport reduces as the stretching pa-
rameter values increase.
Figure 1 shows that for some fixed values of the stretching parameter, fluid
velocity increases as the Casson parameter increases. Also, as the stretching
parameter rises, fluid velocity rises in figure 2.
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The energy profiles are shown in figures 3 to 7. It is examined that Casson fluid
temperature increases as the radiation parameter and heat source parameter
increase. Also, temperature decreases for increasing values of the stretching
parameter, Prandtl number, and Casson parameter.
Figures 8 and 9 show the concentration distribution of the Casson fluid flow.
We noticed that the fluid concentration falls when the stretching parameter and
Schmidt number are increased for some fixed values of other parameters.
The effects of temperature and mass distribution on the stretching sheet pa-
rameter are depicted in figures 4 and 8. The stretching parameter affects the
temperature and mass distributions in the opposite direction. We discovered
that the temperature and mass distributions reduce as the stretching parame-
ter increases. This is due to the stretching parameter’s direct relationship with
the heated fluid’s heat transfer coefficient. The amount of convective energy
transferred is inversely correlated with the thermal resistance of the warm fluid.
As the stretching parameter rises, the warm fluid convection resistance falls,
lowering the surface temperature.

4 Conclusion

This paper studies the flow of Casson fluid past an enlarging surface with ther-
mal radiation and heat source/sink in the presence of Buoyancy effects. The
Soret and Dufour effects on a Casson fluid are investigated about a stagnation
point on a stretching sheet. The momentum, temperature, and concentration
equations are written as a system of ordinary differential equations using a suit-
able similarity transformation and then solved numerically using a code-named
MATLAB bvp4c solver. It is found that heat transport reduces as the stretching
parameter increases. Also, fluid velocity rises with the Casson and stretching
parameters. For the temperature of the fluid, it is seen that it increases with
radiation parameter and decreases with increasing Prandtl number and stretch-
ing parameter values.
Here are some future scope suggestions for the paper entitled “Investigation
of Casson fluid flow past an enlarging surface with thermal radiation and heat
source/sink in the presence of buoyancy effects”:
1. Examine other non-Newtonian fluid models, apart from Casson fluid, to com-
prehend how variations in fluid rheology impact the flow properties.
2. Examine the effects of adding nanoparticles to the Casson fluid to produce
Casson-based nanofluids. Examine how heat sources, sinks, and thermal radia-
tion affect these nanofluid systems.
3. To capture flow patterns and heat transfer characteristics that are more re-
alistic, expand the current work to three-dimensional simulations. This might
offer a more realistic depiction of the actual mechanism.
4. Examine how the system under study affects the environment, considering
energy efficiency, sustainability, and possible uses in eco-friendly technologies.
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Table 1: Assessment of
(
1 + 1

β

)
f ′′ (0) with Peri [12], Bhattacharyya [20], and

Ishak et al. [21] for λ = Pr = Df = 0 = Sc = Sr and β = 108

c/a Present
study

Peri [12] Bhattacharyya
[20]

Ishak et al.
[21]

-0.25 1.40224031 1.4022408 1.4022405 1.402241
-0.50 1.49566920 1.4956698 1.4956697 1.495670
-0.75 1.48929749 1.4892982 1.4892981 1.489298
-1.00 1.32881613 1.3288169 1.3288169 1.328817
-1.15 1.08223159 1.0822312 1.0822316 1.082231
-1.20 0.93247562 0.9324734 0.9324728 0.932474
-1.2465 0.58428232 0.5842817 0.5842915 0.584295
0.0 1.23258722 - - -
0.2 1.05112962 - - -
0.4 0.83407188 - - -
0.6 0.58483595 - - -
0.8 0.30609469 - - -

Table 2: −θ′ (0) for various values of β = 3.5, λ = 0.01, Df = Sr = Sc =
0.1,Pr = 0.72,K = Q = R = 0.2

c/a −θ′ (0)
0.0 1.4034650
0.2 1.19728995
0.4 0.95082859
0.6 0.66793854
0.8 0.35163572
-0.25 1.59653352
-0.5 1.70350740
-0.75 1.69804589
-1.00 1.520163541
-1.15 1.248976011
-1.20 1.08891235
-1.2465 0.81579824
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Figure 1: f ′ (η) for unlike facts of β

Figure 2: f ′ (η) for unlike facts of c/a
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Figure 3: θ (η) for unlike facts of R

Figure 4: θ (η) for unlike facts of c/a
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Figure 5: θ (η) for unlike facts of β

Figure 6: θ (η) for unlike facts of Q
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Figure 7: θ (η) for unlike facts of Pr

Figure 8: ϕ (η) for unlike facts of c/a
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Figure 9: ϕ (η) for unlike facts of Sc

5 References

[1] Nadeem S., Zaheer S., and Fang T., Effects of thermal radiation on the
boundary layer flow of a Jeffery fluid over an exponentially stretching surface,
Num. Algor., 2011, 57, 187-205.
[2] Hiemenz K., Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom
eingetauchten graden Kreiszylinder, Dinglers Polytech. J., 1911, 326, 321–324.
[3] Crane L. J., Flow past a stretching plate, Z. Angew. Math. Phys., 1970, 21,
645–647.
[4] Wang C. Y., The three-dimensional flow due to a stretching flat surface,
Phys. Fluids, 1984, 27, 1915–1917.
[5] Fredrickson A. G., Principles and applications of Rheology, Prentice-Hall,
Englewood Cliffs, N. J., 1964.
[6] Boyd J., Buick J. M., and Green S., Analysis of the Casson and Carreau-
Yasuda non-Newtonian blood models in steady and oscillatory flow using the
lattice Boltzmann method, Phys. Fluids, 2007, 19, 093103.
[7] Nadeem S., Rizwan U. H., and Lee C., MHD flow of a Casson fluid over an
exponentially shrinking sheet, Scientia Iranica B., 2012, 19, 1550-1553.
[8] Qasim M., and Noreen S., Heat transfer in the boundary layer flow of a

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

71 Neemawat et al 59-72



Casson fluid over a permeable shrinking sheet with viscous dissipation, Eur.
Phys. J. Plus, 2014, 7, 129.
[9] Bhattacharya K., Vajravelu K., and Hayat T., Slip effect on parametric space
and the solution for the boundary layer flow of Casson fluid over a non-porous
stretching/shrinking sheet, Int. J. Fluid Mech. Research, 2013, 40, 482-493.
[10] Nandy S. K., Analytical solution of MHD stagnation-point flow and heat
transfer of Casson fluid over a stretching sheet with partial slip, ISRN Thermo-
dynamics, 2013, Article ID 108264, 9 pages.
[11] Mukhopadhyay S., Effect of thermal radiation on Casson fluid flow and
heat transfer over unsteady stretching surface subject to suction/blowing, Chin.
Phys. B., 2013, 22, 1-7.
[12] Peri K., Shaw S., and Sibanda P., Dual solutions of Casson fluid flow over
a stretching or shrinking sheet, Sadhana, 2014, 39, Part 6, 1573–1583.
[13] Kumar D., Dubey V. P., Dubey S., Singh J. and Alshehri A. M., Com-
putational analysis of local fractional partial differential equations in Realm of
fractal calculus, Chaos, Solitons and Fractals 167, 2023, 113009.
[14] Dubey V. P., Singh J., Alshehri A. M., Dubey S. and Kumar D., Analy-
sis and fractal dynamics of some local fractional partial differential equations
occurring in physical sciences, J. Comput. Nonlinear Dynam. 18(3), 2023, 1-23.
[15] Dubey V. P., Singh J., Alshehri A. M., Dubey S. and Kumar D., Analysis of
Cauchy problems and diffusion equations associated with the Hilfer-Prabhakar
fractional derivative via Kharrat-Toma transform, Fractal and Fractional, 2023,
7(5)413, 1-16, https://doi.org/10.3390/fractalfract7050413.
[16] Dubey V. P., Singh J., Alshehri A. M., Dubey S., and Kumar D., Forecasting
the behavior of fractional order Bloch equations appearing in NMR flow via a
hybrid computational technique, Chaos Solitons Fract., 2022, 164, 112691.
[17] Sushila, Singh J., Kumar D. and Baleanu D., A hybrid analytical algorithm
for thin film problem occurring in non-Newtonian fluid mechanics, Ain Shams
Engineering Journal, 2021, 12 (2), 2297-2302.
[18] Singh J., Alshehri A. M., Sushila and Kumar D., Computational analysis
of fractional Lienard’s equation with exponential memory, Journal of Compu-
tational and Nonlinear Dynamics, ASME (The American Society of Mechanical
Engineers), 2023, 18(4), 041004, https://doi.org/10.1115/1.4056858.
[19] Nakamura M. and Sawada T., Numerical study on the flow of a non-
Newtonian fluid through an axisymmetric stenosis, J. Biomech. Eng., 1988,
110, 137–143.
[20] Bhattacharyya K., Dual solutions in boundary layer stagnation-point flow
and mass transfer with chemical reaction past a stretching/shrinking sheet, Int.
Commun. Heat Mass Transf., 2011, 38, 917–922.
[21] Ishak A., Lok Y. Y. and Pop I., Stagnation-point flow over a shrinking sheet
in a micropolar fluid, Chem. Eng. Comm., 2010, 197, 1417–1427.

14

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

72 Neemawat et al 59-72



Neural network based fractional order

sliding mode tracking control of

nonholonomic mobile robots

Naveen Kumara,b, Km Shelly Chaudharya,∗

aNational Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India,
b Mahatma Jyotiba Phule Rohilkhand University Bareilly, Bareilly 243006, Uttar

Pradesh, India,
∗Meerut College Meerut, Meerut 250002, Uttar Pradesh, India

Corresponding author:shelly 62000004@nitkkr.ac.in(KS.Chaudhary)

Abstract. In this study, the position tracking control problem of a non-
holonomic mobile robots with system uncertainties and external distur-
bances is examined. In the design approach, a fractional-order sliding
surface is presented that offers asymptotic stability of the system states
towards their equilibrium points. A fractional order sliding mode con-
troller is developed based on the presented sliding surface in order to
handle system uncertainties and external disturbances in a robust man-
ner. A radial basis function neural network is used to approximate the
nonlinearities of the dynamic structure. The weighted matrices of neural
networks are updated in an online mode. The controller’s adaptive bound
portion is used to manage neural network reconstruction error and pro-
vide upper bounds on disturbances and uncertainty. Using the Lyapunov
technique and Barbalat’s Lemma, the asymptotic stability of the control
system is evaluated. Moreover, a numerical simulation study is carried
out to illustrate the effectiveness of the proposed control approach by
comparing the results with the existing control approaches.

Keywords: Nonholonomic mobile robots, Fractional order sliding sur-
face; Sliding mode control; Neural networks

1 Introduction

Because of their wide applications in the field of medical profes-
sion, industries, military operations, and many other areas [1,2,3],
trajectory tracking control of nonholonomic mobile robots has be-
come a very intriguing study area in recent years. Nonholonomic mo-
bile robots are the mechatronic structures that are extremely non-
linear, coupled, and time-varying. Because of these nonlinearities,
uncertainties, and external disruptions, there are several practical

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

73 Naveen Kumar et al 73-89



2 Naveen Kumara,b, Km Shelly Chaudharya,∗

challenges in managing them. To address these challenges, various
classical control schemes such as Model-based controllers, PID con-
trollers, Back-stepping based controllers, Sliding mode controllers,
Adaptive controllers, etc. [4,5,6] have been presented in the litera-
ture to control these systems.
Among these, sliding mode controllers (SMC) [7] are the most com-
monly used controllers because of their inherent capacity to resist
uncertainty and external disturbances. The intrinsic adaptability at-
tribute of the sliding mode control scheme is that when the sys-
tem is operated on the sliding manifold, it functions independently
of the system dynamics. In sliding mode controller, a sliding syr-
face is utilized to assure the convergence of tracking errors toward
zero. For superior controller performance, linear and nonlinear slid-
ing surfaces are now utilized in SMCs. Using linear sliding surface,
Linear sliding mode controllers [8] (LSMC) have been presented in
the study. LSMC investigates the asymptotic convergence of the tra-
jectory tracking error even when the finite-time trajectory tracking
error cannot be solved by these controllers. Terminal sliding mode
controllers (TSMC) [9] have been presented in the literary texts
to solve this issue. In TSMC, a non-linear sliding manifold is em-
ployed instead of a linear sliding manifold. These controllers guar-
antee tracking error convergence in a finite amount of time, but
occasionally they pose singularity problems that result in unbound-
edly high control input values. The Non-singular Terminal Sliding
Mode Controller (NTSMC) [10], which restricts the non-linear slid-
ing manifold’s parameters, has been proposed as a modified con-
troller to handle this problem. The singularity problem is solved in
NTSMC, although it has a slow convergence rate at the equilibrium
point due to the presence of the term er/s, r > s in the sliding man-
ifold, resulting in a reduction in the convergence rate’s magnitude
away from the equilibrium.
For the enhanced and precise performance of controllers, different
combinations of sliding mode controllers with Fractional Calculus
[11,12,13] have been presented in the literature. Because of their
greater order convergence speed, fractional-order controllers outper-
form integer-order controllers [14,15,16]. The study on integrating
the fractional-order derivative [17] with SMC begins with applying
the fractional order derivative to LSMC , which is known as the
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fractional-order sliding mode controller (FoSMC) [18]. These con-
trollers give superior tracking performance as compared to simple
sliding mode controllers. The reason for this is that the fractional-
order system’s mathematical solution has a faster order convergence
speed than the integer-order system. As fractional order sliding mode
controllers are very efficient controller but the presence of uncer-
tainties and disturbances in the dynamic structure of the manipu-
lator causes many real-time difficulties. So, the employment of in-
telligent approaches such as neural networks [19,20,21] and fuzzy
logics [22,23] improves the controller’s suitability for real-world de-
ployments. In the article [24], the design of a fractional-order sliding
mode controller with a time-varying sliding surface is presented for
trajectory tracking problem of robot manipulators. In this paper au-
thors prove asymptotic convergence of tracking errors towards their
system states. Authors of the article [25] present a fractional adap-
tation law for sliding mode control scheme for multi-input multi-
output nonlinear dynamic system. In the article [26] authors present
a coupled fractional-order sliding mode control scheme using ob-
stacle avoidance for the control of a four-wheeled steerable mobile
robot. A new fractional-order global sliding mode control scheme for
nonholonomic mobile robot systems under external disturbances is
presented in article [27]. While many studies have been conducted
on the position tracking problem of dynamic systems under the in-
fluence of external disturbances and system uncertainties, relatively
few of these studies combine intelligent techniques with the advan-
tageous features of fractional-order sliding mode controllers for the
control of nonholonomic mobile robots. So, the novelty of the pre-
sented work lies on the combination of fractional order sliding surface
and the presented contoller that enhances the performance of the dy-
namical system in a robust manner.
In this paper to enhance the performance of the controller, a neural
network based fractional-order sliding mode controller is presented
for the position control problem of nonholonomic mobile robots un-
der the influence of uncertainties and disturbances. The radial basis
function neural network (RBFNN) is utlized in the developed con-
troller to resemble the nonlinearity of the dynamic structure, and
the exponential reaching rule is utilized when the system is inde-
pendent of its general dynamics. The designed controller’s adaptive
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compensator part handles the neural networks reconstruction error
and upper bounds on disturbances. The Lyapunov stability criterion
and Barbalat’s lemma are used to examine the asymptotic conver-
gence of tracking errors towards their equilibrium states. Moreover,
simulation studies are performed to validate the proposed controller’s
performance in a comparative manner
The main contribution of the presented work is as follows:

1. A new combination of fractional order sliding surface with neu-
ral network based fractional order sliding mode controller is pre-
sented.

2. The position tracking problem for nonholonomic mobile manip-
ulators under the influence of system uncertainties and external
disturbances is discussed.

3. The stability and asymptotic convergence of tracking errors is ex-
amined using Lyapunov stability criterion and Barbalat’s lemma.

4. Simulation studies are used to compare the performance of the
proposed controller to that of existing controllers.

The remaining part of the paper is divided as follows. Sections 2
offer a dynamic model for a nonholonomic mobile robot. Section 3
presents the controller design, while section 4 contains the stability
analysis. Section 5 offers a simulation study, and section 6 concludes
the article.

2 Dynamics of nonholonomic mobile robots

The dynamics equation for 3-dof nonholonomic mobile robots with
generalized cordinates q = [x, y, θ]T satisfies the Euler-Lagrange
equation is given by:

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) + Td = B(q)τ + AT (q)λ (1)

whereM(q) ∈ R3×3 be inertial matrix, V (q, q̇) ∈ R3×3 be centripetal-
coriolis matrix, F (q̇) ∈ R3×1 be friction vector, Td ∈ R3×1 be un-
known bounded disturbance, B(q) ∈ R3×2 be input transformation
matrix, τ ∈ R3×1 be control input, AT (q) ∈ R3×1 be constraint as-
sociated matrix and λ ∈ R be Langranges multiplier.
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With M(q) =

 m 0 m1

0 m −m2

m1 −m2 I

 , Vm(q, q̇) =

0 0 −m2θ̇

0 0 m1θ̇
0 0 0

 , AT (q) =− sin θ
cos θ
0

 , B(q) =

cos θ/r cos θ/r
sin θ/r sin θ/r
b/r −b/r

 ,m1 = mh sin θ,m2 = mh cos θ

where m is total mass of nonholonomic mobile base, I is moment of
inertia of mobile base.
Let the mobile robot system is subject to the following nonholonomic
kinematic constraint.

A(q)q̇ = 0 (2)

These constraints are limitations on the dynamic equation of mo-
bile robots to the manifold ℑB as ℑB = {(q, q̇)|B(q)q̇ = 0}. From
equation (2), we can get the full rank matrix P (q) ∈ R3×2 as:

P T (q)AT (q) = 0 (3)

From constraints given in equations (2) and (3), we have a new vector
v̇ ∈ R2 satisfies the following condition

q̇ = P (q)v̇ (4)

Differentiating equation (4), we have

q̈ = P (q)v̈ + Ṗ (q)v̇ (5)

Putting equation (4) and (5) in equation (1) and multiplying the
obtained equation by P T we get

M̄f v̈ + V̄f v̇ + F̄f + τ̄fd = P T τ (6)

where M̄f = P TM(q)P, V̄f = P TM(q)Ṗ+P TVm(q, q̇)P, F̄f = P TF (q̇),
τ̄fd = P TTd.
Let the dynamics equation (6) of nonholonomic mobile robots satisfy
the following properties and assumptions.
Property 1 The Inertial matrix M̄f is symmetric, bounded positive-
definite and invertible,.

Property 2 The term A = ( ˙̄Mf − 2V̄f ) satisfies skew-symmetric
property i.e. xTAx = 0 ∀x ∈ Rn.
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Assumption 1 F̄f ≤ a1 + a2∥v̇∥ for arbitrary positive constants
a1, a2 .
Assumption 2 ∥τ̄fd∥ ≤ a3 for arbitrary positive constant a3.
Assumption 3 If v = [y, θ]T ∈ R2 is uniformally bounded and con-
tinuous, then all the jacobian matrices are also uniformally bounded
and continuous.

3 Controller Structure

3.1 Fractional-order sliding surface

The proposed fractional-order sliding surface is given as

S(t) = Dα+1η(t) + η̇(t) + λη(t) (7)

where α ∈ (0, 1), η(t) = vd(t)− v(t) denotes position tracking error,
vd(t) ∈ R2 denotes desired trajectory, λ = diag[λ1, λ2] ∈ R2×2 with
λ1, λ2 > 0, and S(t) = [S1(t), S2(t)]

T ∈ R2 be sliding variable. The
jth element of the proposed sliding surface is written as

Sj(t) = Dα+1ηj(t) + η̇j(t) + ληj(t) (8)

where j = 1, 2
On differentiating equation (8), we have

Ṡj(t) = Dα+2ηj(t) + η̈j(t) + λη̇j(t) (9)

The reduced dynamics equation for nonholonomic mobile robots in
terms of sliding variable S(t) ∈ R2 can be written as

M̄f Ṡ = −V̄fS − P T τ + f(y) + τ̄fd + F̄f (v̇) (10)

where, f(y) = M̄f [D
α+2η(t) + v̈d + λη̇(t)] + V̄f (v, v̇)[v̇d +Dα+1η(t) +

λη(t)] be non-linear dynamics part comprises of two factors as f(y) =
f̂(y) + f̄(y) in which f̂(y) is known dynamic part of the system
and f̄(y) is uncertain part of the dynamic system. For approximat-
ing this non-linear function f(y), radial basis function neural net-
works ( RBFNN) has been utilized. The input vector y during ap-
proximation of non-linear function f(y) by RBFNN is choosen as
y = [ηT , η̇T , Dα+1ηT , Dα+2ηT ]T .
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3.2 RBFNN

Due to the adaptive nature of RBFNN [28], it is utilized to reproduce
the non-linear part of the manipulator’s dynamics. Let the function
approximation on a simply connected compact set of the continuous
function f(y) be

f(y) = W T ξ(y) + ϵ(y) (11)

where, W ∈ RN×b demonstrates weight matrix, it will update on-
line in an adaptive manner, ξ(·) : R → RN denotes predefine basis
array, ϵ(y) : R → Rb denotes reconstruction error, N denotes the
no. of nodes used in the structure of neural-networks. So, we have
∥ϵ(y)∥<ϵN for some ϵN>0.
For larger values of N, ϵ(y) may be reduced to very small value.
In the structure of RBFNN, the Gaussian function ξ(y) [29], has
been used which is given as

ξi(y) = exp(
−∥y − ci∥2

σ2
i

), i = 1, 2...N. (12)

Putting the value of function f(y) from (11) into (10). then, the
reduced error dynamical equation be given by

M̄f Ṡ = −V̄fS − P T τ +W T ξ(y) + ϵ(y) + τ̄fd + F̄f (v̇) (13)

3.3 Adaptive bound

From assumptions 1,2 and the upper bound ϵN , we have

∥τ̄fd + F̄f (v̇) + ϵ(y)∥ ≤ a1 + a2∥v̇∥+ a3 + ϵN (14)

As an adaptive bound, define µ = a1 + a2∥v̇∥+ a3 + ϵN

µ =
[
1 ∥v̇∥ 1 1

] [
a1 a2 a3 ϵN

]T
= HT (∥v̇∥)ϕ (15)

where H ∈ Rm is known vector function and ϕ ∈ Rm be the param-
eter vector.
To compensate the influence of friction, reconstruction error, and
disturbances, the adaptive compensator is chosen as

χ =
µ̂2S

µ̂∥S∥+ δ
(16)
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where δ̇ = −βδ, δ(0) > 0, β > 0 and µ̂ = HT ϕ̂.
The control input law is offered as follows to reach the reference
trajectory

P T τ = Ŵ T ξ(y) +K1S +K2sign(S) + χ (17)

with K1, K2 as gain matrices and τ = [τ1, τ2]
T ∈ R2

Using equation (17), the reduced dynamics equation in form of slid-
ing variable S(t) can be given as

M̄f Ṡ = −V̄fS+ W̃ T ξ(y)−K1S−K2sign(S)+ ϵ(y)+ τ̄fd+ F̄f (v̇)−χ
(18)

where W̃ = W − Ŵ

4 Stability analysis

4.1 Asymptotical convergence of tracking error and
boundedness of signals

If we select the update laws for varying parameters as:

˙̂
W = Λwξ(y)S

T (19)

˙̂
ϕ = ΛϕH∥S∥ (20)

where Λw = ΛT
w ∈ RN×N and Λϕ = ΛT

ϕ ∈ Rm×m are positive-definite
matrices. Then, the trajectory tracking error asymptotically con-
verges to zero along with the boundedness of signals.
Proof: Let the Lyapunov function be

L =
1

2
STM̄fS +

1

2
tr(W̃ TΛ−1

w W̃ ) +
1

2
tr(ϕ̃TΛ−1

ϕ ϕ̃) +
δ

β
(21)

where W̃ = W − Ŵ and ϕ̃ = ϕ− ϕ̂.
Differentiating equation (21), we get

L̇ =
1

2
ST ˙̄MfS + STM̄f Ṡ + tr(W̃ TΛ−1

w
˙̃W ) + tr(ϕ̃TΛ−1

ϕ
˙̃ϕ) +

δ̇

β
(22)
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Putting equation (18) into equation (22) with ˙̃W = − ˙̂
W, ˙̃ϕ = − ˙̂

ϕ,
and δ̇ = −βδ, we get

L̇ =
1

2
ST ( ˙̄Mf − 2V̄f )S + ST W̃ T ξ(y)− ST (K1S +K2sign(S)) + ST (F̄f

(v̇) + ϵ(y) + τ̄fd)−
µ̂2S

µ̂∥S∥+ δ
)− tr(W̃ TΛ−1

w
˙̂
W )− tr(ϕ̃TΛ−1

ϕ
˙̂
ϕ)− δ

(23)
From equations (19), (20), and property 2, equation (23) can be
written as

L̇ =− ST (K1S +K2sign(S)) + ST (F̄f (v̇) + ϵ(y) + τ̄fd)−
µ̂2∥S∥2

µ̂∥S∥+ δ
−

ϕ̃TH∥S∥ − δ
(24)

Using adaptive bound µ, we get

ST (F̄f (v̇) + ϵ(y) + τ̄fd) ≤ HT (ϕ̂+ ϕ̃)∥S∥ (25)

From (25), we have equation (24) as

L̇ ≤ −STK1S − STK2sign(S)−
(HT ϕ̂)2∥S∥2

HT ϕ̂∥S∥+ δ
+ (HT ϕ̂)∥S∥ − δ

(26)

L̇ ≤ −STK1S − δ(HT ϕ̂)∥S∥
HT ϕ̂∥S∥+ δ

− δ = −STK1S − δ2

HT ϕ̂∥S∥+ δ
(27)

L̇ ≤ −STK1S ≤ −Kmin∥S∥2 (28)

where Kmin be the min. eigenvalue of matrix K1.
So, it is concluded that L1(S(0), W̃ , ϕ̃) and L1(S(t), W̃ , ϕ̃) are both
bounded functions with L1(S(t), W̃ , ϕ̃) as non-increasing function .
Thus, it has been shown that S(t), W̃ , and ϕ̃ are all bounded. As
S(t) is function of location and velocity tracking error, so bounded
value of S(t) leads to the boundedness of these tracking errors.
Differentiating equation (28), we have L̈ ≤ −2STK1Ṡ. As S(t) and
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Ṡ(t) (Equation (18)) are both bounded implies L̈1 is also bounded,
that means L̇1 is uniformly continuous. Using to Barbalat’s lemma,
the position tracking errors approaches to zero in an asymptotic
manner.

5 Simulation

To show the effecient performance of the designed controller, a sim-
ulation study is carried out on a nonholonomic mobile robot. The
dynamic structure and parameters used in this study for position
tracking problem of nonholonomic mobile robot is given in [30]. The
non-holonomic constraint applied on mobile robot system is con-
sidered as: −ẋ sin(θ) + ẏ cos(θ) = 0. The simulation study on non-
holonomic mobile robot is carried out using Matlab. ODE45 Matlab
solver is utilized to solve ordinary differential equation. For calculat-
ing fractional order derivative, definition of Grunwald-Letnikov(GL)
derivative [31] has been used.
To show the effectiveness and robustness of the proposed control
scheme, the performance of the proposed control scheme is compared
with the existing controller given in article [32], proposed controller
by taking adaptive compensator is equal to zero and with desired
trajectory. Figures 1-6 show how well the suggested control tech-
nique for a nonholonomic mobile robot system works. Figures 1 and
2 compare the location and velocity tracking errors of the proposed
controller. These data demonstrate that the trajectory tracking er-
rors for the proposed control method converge rapidly when com-
pared to the existing controller. The location tracking performance
is displayed in Figures 3 and 4. In the second case i.e. proposed
controller with ∆ = 0, due to the presence of the disturbances and
reconstruction error, there is some fluctuations during the tracking of
reference trajectory but the performance of the proposed controller
is very smooth that shows the robustness of the proposed controll
approach. These Figures shows that the dynamic system tracks the
desired trajectory very efficiently for the proposed case as compare
to the other two cases. In Figures 5 and 6, velocity tracking perfor-
mance is given that shows in the initial phase, the velocity of the
mobile robot system fluctuates but after a very small duration, it
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tracks the reference velocity very smoothly for the proposed ap-
proach while for other two cases, the trajectory achieve after some
time. From these figures, We get to the conclusion that the proposed
controller precisely and quickly tracks the reference trajectory in a
robust manner.
Further to compare the performance of controllers statistically, L2

norm error analysis is presented in tabular form by comparing these
parameters with existing controllers. Formula used for L2 norm is
given as

L2[η] =

√
1

tf − t0

∫ tf

t0

∥η(t)∥2dt (29)

Table 1. L2-norm of position tracking error

Controllers L2[η1] L2[η2]

Existing controller [32] 0.1548 0.2180
Proposed controller with ∆ = 0 0.0997 0.0696
Proposed Controller 0.0100 0.0150

A lower value of L2[η] shows a lower tracking error, which demon-
strates the effectiveness of the control strategy.

6 Conclusions

In this article, a neural network based fractional-order sliding mode
controller is designed for the trajectory tracking problem of non-
holonomic mobile robots. In the designed controller, RBFNN is used
for approximation of the nonlinear part of dynamic structure, and
an exponential reaching law is adopted. An adaptive compensator
makes up for reconstruction error and disturbance upper limits. In
order to analyze the convergence of tracking errors asymptotically,
the Lyapunov stability criterion and Barbalat’s lemma are used. To
show the effectiveness and robustness of the presented controller, a
simulation study is carried out in a comparative manner. It can be
evident from the simulated data and statistical analysis that the ef-
ficiency of the proposed controller is enhanced. Further this control
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approach can be implemented to another dynamical systems such
as mobile manipulator systems, cart-pendulum systems, constrained
reconfigurable dynamical systems ect.
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Abstract

Mathematical models are being used to investigate the dynamics of disease
dissemination, forecast future trends, and access the most effective preventative
measures to minimise the extent of epidemic outbreaks. This study formulates an
eight compartmental epidemiological model to analyze the COVID-19 dynamics.
The stability analysis of infection-free equilibrium is performed. The parameters are
estimated by fitting this model to reported confirmed COVID-19 cases in India for
350 days. Sensitivity analysis is executed to identify the most sensitive parameters
in this model. An optimal control analysis for India is implemented by incorporating
four controls: 1) Public awareness initiatives using the media and civic society
to persuade uninfected people not to interact with infected ones, 2) the effort of
vaccinating susceptible individuals by supposing all of the susceptible people who
got their vaccination are promptly moved to the recovered class 3) encouraging
those who are infected with COVID-19 disease to stay at home or join in quarantine
centres, as well as encouraging the severe cases admit in the hospital. The results
are demonstrated that employing all four control measures significantly reduced the
proportion of COVID-19 infections.

Keywords: : Mathematical model, Stability analysis, Sensitivity analysis, optimal con-
trol.
Subject Classification: 92D30, 37N25, 34D20, 49J15.

1 Introduction

The most current and dangerous virus is COVID-19, a new coronavirus that initially
emerged in early 2020 and is still uncontrolled. Although the first cases are found on
31 December, 2019, in Wuhan, China, the disease’s biological origin has not yet been
fully determined. Later, the WHO designated the novel coronavirus disease as COVID-
19 [1]. On January 30, 2020, the WHO is declared the outbreak a significant global
public concern. The COVID-19 pandemic, which is now the major public health issue
confronting the world after the Second World War, has already reached 767,972,961
infected cases and more than 6,950,655 fatalities as of July 12, 2023 [2]. Numerous
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studies demonstrate that COVID-19 may have been a zoonotic (transmitted from animal
to human). The significant increase in COVID-19 cases also highlights the crucial fact
that secondary dissemination occurs from person to person through direct contact or via
particles of the virus dispersed by an infected person’s coughing or sneezing.

Mathematical models are used to analyze the dissemination dynamics of epidemic
infections with appropriate structures. Among the various models used in the study of
epidemic diseases, compartmental models are widely used for the disease dissemination
dynamics by subdividing into several compartments based on the need of the investiga-
tion [3]. Nowadays researchers prefer the compartmental models for their controllable
and simple nature. An overview of several compartmental models is given in [4]. By
applying a classical SIR (Susceptible, Infected, Recovered) model to various lockdown
situations, Bagal et al. [5] are provided a complete study on COVID-19 spread in lock-
down periods. Anand et al [6] are predicted the COVID-19 dissemination in India using
the SIR model by considering isolation and testing parameters. This study also analyses
the effects of lockdown before and after an rising the COVID-19 cases. At the beginning
of the pandemic, the data shown that some infected populations, who has not show any
symptoms have capable to spread COVID-19. These individuals are corresponding to the
asymptomatic class. The asymptomatic individuals become symptomatic on an average
period of three [7]. Similarly, a mathematical model [8] containing 22 compartments
was introduced which related to susceptible, exposed, asymptomatic, pre-symptomatic,
mildly symptomatic, severely symptomatic, detected, undetected, hospitalized, critical,
recovered, dead compartments, etc. These extended models are accurate in defining the
process of reality but they could not find perfect values for unknown parameters [9]. In
recent years, the researchers are adopted various mathematical modeling approaches us-
ing real incidence datasets (especially in the case of COVID-19) with different parameters
of the outbreak throughout the world. The concept of optimal control [10], transmis-
sible illnesses must be controlled by giving appropriate dosages at the proper times for
preventative measures. In contrast, mathematical modelling of transmissible illnesses
has shown that the combination of vaccination, isolation, hospitalisation, and awareness
campaigns are required to completely eradicate transmissible illnesses. The implemen-
tation of non-pharmaceutical intervention techniques can be a crucial factor in lowering
the prevalence of infected populations. Investigating the dissemination of COVID-19
using the theory of optimum control techniques, Silva et al [11] are demonstrated that
the diseases require optimal doses to be controlled. Mondal et al [12] are examined the
COVID-19 disease dissemination dynamics employing vaccination as a control factor.

Dupey et al. [32] devised an effective computer technique called the Sumudu residual
power series method for solving fractional Bloch equations arising in NMR flow. Alshehri
et al [33] apply the local fractional natural homotopy perturbation technique to solve
specific local fractional partial differential equations with fractal beginning conditions
that arise in the physical sciences within the fractal domain. Dupey et al. have con-
structed a mathematical model for hepatitis E that incorporates a fractional derivative to
describe the viral dynamics. Dupey et al. [34] are constructed a model to analyzed using
a combination of semi-analytical techniques, including homotopy polynomial equations
as well as the Sumudu transform method. Dupey et al.[35] investigated a fractional order
model of the phytoplankton-toxic phytoplankton-zooplankton system using the Caputo
fractional derivative. They employed three computational methods to investigate this
model: the residual power series method, the homotopy perturbation Sumudu transform
method, and the homotopy analysis Sumudu transform method. Dupey et al. [36] have
created a fractional model that describes the changes in atmospheric CO2 content. They
explored this model using a combination of a semi-analytical homotopy scheme, Sumudu
transform, and homotopy polynomials. Devendra et al. [37] devised a hybrid local frac-
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Figure 1: Flow chart of SEAIJHRD model.

tional method for solving certain local fractional partial differential equations. Fractal
models can be effectively represented by local fractional derivatives in partial differential
equations.

In this study, we are developed a deterministic mathematical model with eight
compartments to analyse the COVID-19 dissemination dynamics in India. This model
extends to optimal control approach incorporating three distinct control strategies to
lower the COVID-19 dissemination. The rest of the article structured as follows: a
full explanation of the model formulation is provided in Section.2 The stability analysis
of the infection equilibrium is performed and the fundamental reproduction number
is determined in Section.3. The model calibration, sensitivity analysis, and effect of
parameters on infected classes are performed in Section.4. The optimal control technique
with four distinct controls and their numerical simulations are discussed in Section.5. The
final section 6 ends with conclusion.

2 Model formulation

In this study we formulate a deterministic mathematical model with eight compart-
ments to analyze the dissemination dynamics of COVID-19. The total population N(t)
in this model divided into Susceptible population (S(t)), Exposed population (E(t)),
Asymptomatic infected population (A(t)), Symptomatic infected population (I(t)), iso-
lated population (J(t)), Hospitalized population (H(t)), Recovered population (R(t))
and Deceased population (D(t)). Then
N (t) = S (t) + E (t) + A (t) + I(t) + J (t) + H (t) + R (t)+D(t).
Dynamics of susceptible population S(t): A susceptible population are those who
is at risk of becoming infected by a virus after moving closed with the infected person.
This population increased by a constant inflow rate π and diminished by a natural mor-
tality rate µ. In this case βζa and βζs denote the dissemination coefficients of susceptible
to asymptomatic and symptomatic populations where ζa and ζs adjustment factors for

3
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asymptomatic infected and symptomatic infected populations. So the susceptible popu-
lation decreases at the rates βζa and βζs respectively. The rate of change of susceptible
population can be expressed as
dS
dt = π − β(ζaA+ ζsI)

S
N − µS.

Dynamics of exposed population E(t): It is the group of people who have been
exposed to COVID-19 but have not yet exhibited any symptoms. As a result of the
susceptible individuals exposure to infection, this population grows. At a rate of ω, a
portion θ of the exposed population moves to the asymptomatic population (A) and the
remaining portion (1− θ) moves to the symptomatic infected population (I). So the ex-
posed population decreases at rate ω and also it reduces by µ. Hence the rate of change
of exposed population is represented as
dE
dt = β(ζaA+ ζsI)

S
N − (ω + µ)E.

Dynamics of asymptomatic infected population A(t): Asymptomatic infected
individuals are those who exposed to the virus but does not shows any symptoms. Since
the exposed population transition to the asymptomatic population at the rate ω by a
constant proportion θ, this population grows at a portion θω. Since some individuals of
the asymptomatic population are recovered themselves at rate γa while others become
symptomatic at rate ϵ by exhibiting symptoms, this population reduces at rates γa and
ϵ. This population also diminishes by natural death rate µ. So the rate of change of
asymptomatic population is defined by
dA
dt = θωE − (ϵ+ γa + µ)A.
Dynamics of symptomatic infected population I(t): Symptomatic infected indi-
viduals are those who exposed to COVID-19 virus and are able to spread the disease are
considered to be symptomatic. This population grows at the rate (1 − θ) because the
constant portion (1− θ)ω of exposed population exhibits symptomatic at rate ω. Due to
some of this population being isolation at a rate λs of and some other population being
hospitalised at a rate ηs because of severe illness, this symptomatic population decreases
by λs and ηs rates. Since some of asymptomatic populations exhibits symptoms at the
rate ϵ, the symptomatic individuals decreases at rate ϵ. Also this population diminishes
by both symptomatic individuals death rate µs and natural death rate µ. As results the
rate of change of symptomatic population is stated as
dI
dt = (1− θ)ωE + ϵA− (λs + ηs + µs + µ)I.
Dynamics of isolated population J(t): Infected population who are join in isolation
centers or placed in self-isolation comprise the isolated population. Since some of symp-
tomatic infected individuals are joined in isolation centers at a rate λs, this population
increases by the rate λs. As some of these isolated individuals recovered at a rate γj and
some are joined in hospitals at the rate ηj due to severe illness, this population decreases
at the rates γj and ηj . This population also decreases by natural mortality rate µ. So
that, the rate of change in the isolated population can be represented by
dJ
dt = λsI − (ηj + γj + µ)J .
Dynamics of hospitalization population H(t): The hospitalized individuals are
those who have developed COVID-19 clinical symptoms and are admitted to the hos-
pital for treatment. Due to severity of illness some of symptomatic infected population
and some of isolation population are hospitalized at the rates ηs and ηj . So that this
population enhanced by the rates ηs and ηj . Since some of this population recovered
at the rate γh while other some of this population died at the rate µh, this population
decreases by the rates γh and µh.The rate of natural death µ also diminished their pop-
ulation. Hence the rate of change of hospitalized population can be articulated as
dH
dt = ηsI + ηjJ − (γh + µh + µ)H.
Dynamics of recovered population R(t): These are the individuals who have cured
from the asymptomatic infected, isolated, and hospitalized populations. Since some of
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the individuals from asymptomatic infected, isolation, and hospitalized populations are
recovered from COVID-19 at the rates γa, γj and γh, this population grows by the rates
γa, γj and γh. This population also reduces by natural mortality rate µ. Thus the rate
of change of recovered population can be represented as
dR
dt = γaA+ γjJ + γhH − µR.
Dynamics of deceased population D(t): These are the individuals who died at
severeness of COVID-19 disease. This population increases at the mortality rate µs of
symptomatic infected individuals and at the mortality rate µh of hospitalised individu-
als. Hence the rate of change of deceased population is defined as
dD
dt = µsI + µhH.

Using all of the aforementioned biological hypotheses, we provide a graphical depic-
tion of the proposed model in Figure 1 and then the model is governed by the following
eight nonlinear system of differential equations as follows :

dS

dt
= π − β(ζaA+ ζsI)

S

N
− µS,

dE

dt
= β(ζaA+ ζsI)

S

N
− (ω + µ)E,

dA

dt
= θωE − (ϵ+ γa + µ)A,

dI

dt
= (1− θ)ωE + ϵA− (λs + ηs + µs + µ)I,

dJ

dt
= λsI − (ηj + γj + µ)J,

dH

dt
= ηsI + ηjJ − (γh + µh + µ)H,

dR

dt
= γaA+ γjJ + γhH − µR,

dD

dt
= µsI + µhH.

(1)

with the primary conditions

S(0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0, J(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0,&D(0) ≥ 0. (2)

The information of the various parameters used in the proposed model are listed in
Table 1.

3 SEAIJHRD model analysis

3.1 Positivity and boundedness

Theorem 1. For t ≥ 0, all the solutions (S(t), E(t), A(t), I(t), J(t), H(t), R(t), D(t)) ∈
R8

+ of the system (1) with primary conditions (2) are non-negative and uniformly bounded
in the specified region Ω.

Proof. Let (S(t), E(t), A(t), I(t), J(t), H(t), R(t), D(t)) ∈ R8
+ be a solution of system (1)

for t ∈ [0, t0], where t0 ≥ 0.
From the first equation of (1), we get
dS
dt = π − (ζaA+ ζsI)

S
N − µS = π − Φ(t)S, where Φ(t) = β(ζaA+ ζsI)

1
N + µ.

5
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Table 1: Complete depiction of model parameters of the SEAIJHRD model.

Parameter Description Value Source
π Net inflow of susceptible population varies -
θ Proportion of exposed population 0.7 [13, 14]
ω Conversion rate from exposed to infected population 0.4 [14, 15]
ζa, Adjustment factor for asymptomatic infected population 0.3 [16]
ζs Adjustment factor for symptomatic infected population 0.4 [17]
β Infection dissemination rate 0.5313 Estimated
ϵ The transition rate of asymptomatic infected individuals 0.0168 [18]

to symptomatic infected individuals
λs Isolation rate from symptomatic infected population 0.0828 [19]
ηs Hospitalization rate of symptomatic infected population 0.0094 Estimated
ηj Hospitalization rate of isolated population 0.1125 Estimated
γa Recovery rate of asymptomatic population 0.1302 [20]
γj Recovery rate of isolated population 0.017 [21]
γh Recovery rate of hospitalized population 0.07048 [22]
µs Mortality rate of symptomatic infected population 0.00001945 [23]
µh Mortality rate of hospitalization population 0.00001945 [23]
µ Natural death rate 0.0000391 [24]

Following integration, we obtain

S(t) = S0 exp
(
−
∫ t

0
Φ(s) ds

)
+ π exp

(
−
∫ t

0
Φ(s) ds

) ∫ t

0
e
∫ s
0
Φ(u) du ds > 0.

From the second equation of (1), we have
dE
dt = (ζaA+ ζsI)

S
N − (ω + µ)E ≥ −(ω + µ)E,

which leads to E(t) = E0 exp(−
∫ t

0
(ω + µ) ds) ≥ 0.

The third equation of (1) gives
dA
dt = θωE − (γa + ϵ+ µ)A ≥ −(γa + ϵ+ µ)A,

which implies to A(t) = A0 exp(−
∫ t

0
(γa + ϵ+ µ) ds) ≥ 0.

Similarly we can prove that from remaining equations of (1), I(t) ≥ 0, J(t) ≥ 0,H(t) ≥ 0,
R(t) ≥ 0 and D(t) ≥ 0.
We now establish the system (1) solutions’ boundedness.
consider the total populationN = S + E +A+ I + J +H +R+D.
Taking the differentiation of above equation and using (1), we get dN

dt = π − µN ,
which leads to N(t) = N(0)e−µt + π

µ (1− e−µt).

Hence N(t) ≤ π
µ if N(0) ≤ π

µ .

Consequently if N(0) > π
µ then N(t) approaches to π

µ and the amount of infections in E,
A, I, J and H shall be zero as t → ∞.
Therefore S + E +A+ I + J +H +R+D ≤ π

µ .

Hence all solution trajectories (S,E,A, I, J,H,R,D) are uniformly bounded in the region
Ω = {(S,E,A, I, J,H,R,D) ∈ R8

+ : S + E +A+ I + J +H +R+D ≤ π
µ}.

3.2 Infection-free equilibrium and fundamental reproduction
number

The first seven equations in system (1) are independent of the final equation, so it can
be eliminated. By equating the right-hand side of the system of equations (1) to zero
and then using E = A = I = J = H = 0, the infection-free equilibrium (E0) of the

6
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model system (1) is obtained. Therefore E0 = (πµ , 0, 0, 0, 0, 0, 0).
One of the most important measures in contagious diseases is the fundamental

reproduction number R0. It is defined as the average number of secondary cases that
would be generated by a primary infected individual in an entire susceptible population.
The total number of infected cases will rise if R0 > 1, as it would at the beginning of
an epidemic. Where R0 = 1, the illness is endemic, and if R0 < 1, the total number of
cases will decrease. Through the next generation matrix method [25, 26], we determine
the fundamental reproduction number R0 as follows:

F =

βζa + βζs
0
0

 and V =

 (ω + µ)E
−θωE + (ϵ+ γa + µ)A

−(1− θ)ωE + ϵA− (λs + ηs + µs + µ)


The Jacobian matrices of F and V at E0 are expressed as

F =

0 βζa βζs
0 0 0
0 0 0

 & V =

 ω + µ 0 0
−θω ϵ+ γa + µ 0

−(1− θ)ω −ϵ λs + ηs + µs + µ

 .

The fundamental reproduction number, the largest eigen value of the matrix FV −1 is

R0 = θωβζa
(ϵ+γa+µ)(ω+µ) +

βζs[(ϵ+γa+µ)(1−θ)ω+θωϵ]
(ϵ+γa+µ)(λs+ηs+µs+µ)(ω+µ)

Theorem 2. If R0 < 1 then the infection-free equilibrium E0 = (πµ , 0, 0, 0, 0, 0, 0) is

locally asymptotically stable (LAS).

Proof. The variation matrix corresponding to the system (1) at E0 is
J(E0) =

−µ 0 −βζa −βζs 0 0 0
0 ω + µ βζa βζs 0 0 0
0 0 −(ϵ+ γa + µ) 0 0 0 0
0 θω ϵ −(λs + ηs + µs + µ) 0 0 0
0 (1− θ)ω 0 λs −(ηj + γj + µ) 0 0
0 0 0 ηs ηj −(γh + µh + µ) 0
0 0 γa 0 γj γh −µ


The characteristic equation | JE0 − λI |= 0 is represented by
(λ+ (ηj + γj + µ))(λ+ (γh + µh + µ))(λ+ µ)2(λ3 + a1λ

2 + a2λ+ a3) = 0,
where a1 = (ϵ+ γa + µ) + (λs + ηs + µs + µ) + (ω + µ),
a2 = ((ϵ+γa+µ)+(λs+ηs+µs+µ))(ω+µ)+(ϵ+γa+µ)(λs+ηs+µs+µ)− (θωβζa+
(1− θ)ωβζs), and
a3 = (ϵ+ γa + µ)(λs + ηs + µs + µ)(ω + µ)(1−R0).
There are seven eigenvalues, among that the first four values are −µ, -µ, -(ηj + γj + µ),
-(γh + µh + µ) and the remaining three eigen values are cube roots of an equation
(λ3 + a1λ

2 + a2λ+ a3) = 0.
Routh–Hurwitz Criteria asserts that theE0 is LAS if a1 > 0, a2 > 0, a3 > 0 and a1a2 >
a3.
Clearly a1 > 0 and a2 > 0.
a3 = (ϵ+ γa + µ)(λs + ηs + µs + µ)(ω + µ)(1−R0) > 0 and
a1a2−a3 = (ϵ+γa+µ)+(λs+ηs+µs+µ)+(ω+µ)((ϵ+γa+µ)+(λs+ηs+µs+µ))(ω+µ)
+ (ϵ+ γa + µ)(λs + ηs + µs + µ)− (θωβζa + (1− θ)ωβζs)− (ϵ+ γa + µ)(λs + ηs + µs +
µ)(ω + µ)(1−R0) > 0 if R0 < 1.
Hence E0 is LAS if R0 < 1.

7
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Theorem 3. The infection free equilibrium E0 = (πµ , 0, 0, 0, 0, 0, 0) of system (1) is

globally asymptotic stable (GAS) if R0 < 1.

Proof. Based on equation (1), it is evident that S and R represent classes that are free
from infection, while E, A, I, J, and H represent classes that are infected. Therefore (1)
can be expressed as
dX
dt = U(X,Y ),
dY
dt = V (X,Y ), V (X, 0) = 0,
where X = (S,R) ∈ R2

+ denotes the disinfected population and Y = (E,A, I, J,H) ∈ R5
+

represents the infected population.
Thus E0 = (X∗, 0) identified as the infection free equilibrium of system (1).
For the model (1), U(X, Y ) and V(X, Y ) are described as follows:

U(X, Y ) =

(
π − β(ζaA+ ζsI)

S
N − µS

γaA+ γjJ + γhH − µR

)
&V(X, Y ) =


β(ζaA+ ζsI)

S
N − (ω + µ)E

θωE − (ϵ+ γa + µ)A
(1− θ)ωE + ϵA− (λs + ηs + µs + µ)I

λsI − (ηj + γj + µ)J
ηsI + ηjJ − (γh + µh + µ)H


From the expression V(X, Y), easily show that V(X, 0) = 0

To prove that E0 is GAS, we verify the following two conditions
(I). dX

dt = U(X, 0) where X∗ is GAS.
(II). V (X,Y ) = KY − V̄ (X,Y ), V̄ (X,Y ) ≥ 0, for (X,Y ) ∈ Ω
where K = DY V (X∗, 0) is M- Matrix in the region Ω.
The deterministic model system (1) stated in (I) can be expressed as

d
dt

(
S
R

)
=

(
π − µS
−µR

)
,

⇒ S(t) = π
µ + (S(0)− π

µ )e
−µt and R(t) = R(0)e−µt

As t → ∞, S(t) = π
µ and R(0) = 0.

Thus X∗ is GAS for dX
dt = U(X, 0) and hence the first condition (I) is satisfied for

system (1).
Now the matrices K and V̄ (X,Y ) of model system (1) can be expressed as K =
−(ω + µ) βζa βζs 0 0

θω −(ϵ+ γa + µa + µ) 0 0 0
(1− θ)ω ϵ −(λs + ηs + µs + µ) 0 0

0 0 λs −(ηj + γj + µ) 0
0 0 ηs ηj −(γh + µh + µ)



& V̄ (X,Y ) =


β(ζaA(1− S

N ) + ζsI(1− S
N )

0
0
0
0

 .

Since all non-diagonal elements of matrix K are non-negative, K is M- matrix and as
S(t) ≤ N(t), V̄ (X,Y ) ≥ 0 for all (X,Y ) ∈ Ω.
Thus the (II) condition is satisfied.
Hence E0 is GAS for R0 < 1.
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Figure 2: Model fitting based on reported data.

4 Numerical simulation

4.1 Model calibration

In this section, the model (1) fits to confirmed COVID -19 cases for all over India
acquired from official site COVID-19 India API (Application Programming Interface)
[27] in time period between January 30, 2020, and January 12, 2021. The parameter
values β, ηs and ηj are estimated by minimizing the sum of squared error (SSE) method
(lsqnonlin function) in MATLAB. We minimize the sum of squared error (SSE) as SSE =∑n

t=1((Z(t)− ¯Z(t))2.
where Z(t) denotes the reported COVID-19 confirmed cases while ¯Z(t) signifies the model
(1) output respectively. The estimated parameter values and other fixed parameter values
obtained from the literature are listed in Table 1. Figure 2 illustrates that the model fit
with the daily COVID-19 confirmed cases in India. The model solution is represented
by red circles, while the reported data is shown by a blue dotted line.

4.2 Sensitivity analysis

Sensitivity analysis performance is very important in detecting the influence of dif-
ferent parameters in the spreading of the coronavirus. This method is very useful for
discerning the increase and decrease in the R0 value with respect to different parame-
ters. A complete report of dengue fever sensitivity is executed in [28]. The sensitivity
of parameters defines whether the contagious diseases will spread throughout the popu-
lation or not. Through sensitive analysis, we analyze the influence of parameters on the
model. Whenever parameters are determined, different techniques can be carried out for
attaining excellent results. Through the normalized forward sensitivity technique [29] a
for R0, normalized forward sensitivity index of significant parameter p is determined as
ΓR0
p = ∂R0

∂p × p
R0

.
The parameter on R0 that has a greater magnitude index is more sensitive. If

the sensitivity index is positive, R0 grows as the parameter p grows. Similarly if the
sensitivity index has a negative sign, in which case R0 falls as p grows. Thus, our
sensitivity analysis yields the parameters ζa, ζs, ω and β have positive effect on R0 while
the parameters θ, λs, ηs, γa, µs and µ are the negative effect on R0. Among these
parameters ζa, ω and β are more effective on rise of R0 whereas λs and ηs are more
efficient on fall of R0.

Figure 4(a) indicates the contour Plot of R0 in relation to virus dissemination rate

9
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Figure 4: Contour plots of R0 with respect to parameters (a)(β, ηs) and (b)(β, λs).
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Figure 5: Variations in infected population with respect to parameters (a) (λs, ηj) and
(b) ( λs, ηs).

(β) and hospitalization rate (ηs) from symptomatic infected population. This plot is
revealed that whenever the contact rate(β) decreases and the hospitalization rate(ηs)
increases, the basic reproduction number decreases. Figure 4(b) indicates the contour
Plot of R0 in relation to virus dissemination rate (β) and quarantine rate (λs) from
symptomatic infected populations. This plot is demonstrated that whenever the contact
rate (β) decreases and quarantine rate (λs) increases, the R0 value decreases so that the
spreading of virus decreases.

4.3 COVID-19 Prevalence changes with significant parameters

In this section, we analyse the effect of parameters on infected population. Figure 5 is
demonstrated that the infected population reduces when the isolation rate (λs) of symp-
tomatic infected population and hospitalization rate (ηj) of isolated population risen.
Similarly the disease dissemination will be decreased if both isolation and hospitaliza-
tion rates of symptomatic infected population increased.

5 Optimal control

5.1 Optimal control model

In the fields of engineering, sciences, and economics, optimal control has major signifi-
cance. Optimal control is used in detecting parameters that can control definite variables
to yield the optimum result. By implementing the most effective intervention measures,
we aim to reduce the number of infected, isolated, and hospitalised individuals. The
system (1) is extended to optimal control model by including four control variables u, v,
w1 and w2. The control u involves awareness campaigns in the media and in civil society
to encourage people to use face masks, sanitation and keep their distance from infected
people to diminish the spread of disease. The second control v represents the effort of
vaccinating susceptible individuals by supposing all of the susceptible people who got
their vaccination are promptly moved to the recovered class. The last two controls w1

and w2 represent encouraging the asymptomatic infected individuals to join isolation
and symptomatic infected individuals to join either hospitals or isolated. As a result, w1

and w2 are evaluated in comparison to improved medical facilities, such as an increase
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in beds, ventilators, mobile isolation centres, etc. Therefore the set of four controls is
defined as

U = {u, v, w1, w2 : Lebesgue integral and 0 ≤ u, v, w1, w2 ≤ 1, t ∈ [0, T ]}.

Taking into account all of the aforementioned presumptions, the formulated optimal
control model is

dS

dt
= π − (1− u(t))β(ζaA+ ζsI)

S

N
− µS − v(t)S,

dE

dt
= (1− u(t))β(ζaA+ ζsI)

S

N
− (ω + µ)E,

dA

dt
= θωE − (ϵ+ γa + µ)A− w1(t)A,

dI

dt
= (1− θ)ωE + ϵA− (λs + ηs + µs + µ)I − w2(t)I,

dJ

dt
= w1(t)A+ λsI − (ηj + γj + µ)J + ρw2(t)I,

dH

dt
= ηsI + ηjJ − (γh + µh + µ)H + (1− ρ)w2(t)I,

dR

dt
= γaA+ γjJ + γhH − µR+ v(t)S,

dD

dt
= µsI + µhH.

(3)

For the fixed T, the objective functional is presented by

J =

∫ T

0

(C1A+ C2I + C3J + C4H +
1

2
(C5u

2 + C6v
2 + C7w

2
1 + C8w

2
2) dt.

(4)

Here C1, C2, C3, C4, C5, C6, C7 and C8 are non negative weight constants.
The objective is to determine the control variables u∗, v∗, w∗

1 and w∗
2 such that

J (u∗, v∗, w∗
1 , w

∗
2) = min

u,v,w1,w2∈U
J (u, v, w1, w2).

The Lagrangian of this model (3) is
L(S,E,A, I, J,H,R,D, u(t), v(t), w1(t), w2(t)) = C1A + C2I + C3J + C4H + 1

2 (C5u
2 +

C6v
2 + C7w

2
1 + C8w

2
2).

For this problem, the Hamiltonian function H is defined as
H = C1A+C2I+C3J+C4H+ 1

2 (C5u
2+C6v

2+C7w
2
1+C8w

2
2)+λ1

dS
dt +λ2

dE
dt +λ3

dA
dt +

λ4
dI
dt + λ5

dJ
dt + λ6

dH
dt + λ7

dR
dt + λ8

dD
dt .

where λi for i = 1,2,3,...8 are the adjoint variables.

Theorem 4. If the couple (S∗, E∗, A∗, I∗, J∗, H∗, R∗, D∗) is solutions of the system
(3) that minimizes the objective functional (4) with relation to optimal controls u∗(t),
v∗(t), w∗

1, w∗
2 ∈ U , then there are adjoint variables λi for i =1,2,3,...8 satisfies the
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canonical equations:

λ′
1 = −∂H

∂S
= (λ1 − λ2)β(1− u)(ζaA+ ζsI)

1

N
+ (λ1 − λ7)v + λ1µ,

λ′
2 = −∂H

∂E
= (λ2 − λ4)ω + (λ4 − λ3)θω + λ2µ,

λ′
3 = −∂H

∂A
= −C1 + (λ1 − λ2)β(1− u)

ζaS

N
+ (λ3 − λ4)ϵ+ (λ3 − λ5)w1 + (λ3 − λ7)γa + λ3µ,

λ′
4 = −∂H

∂I
= −C2 + (λ1 − λ2)β(1− u)

ζsS

N
+ (λ4 − λ5)λs + (λ4 − λ6)(ηs + w2)

+(λ6 − λ5)ρw2 + (λ4 − λ7)µs + λ4µ,

λ′
5 = −∂H

∂J
= −C3 + (λ5 − λ6)ηj + (λ5 − λ7)γj + µλ5,

λ′
6 = −∂H

∂H
= −C4 + (λ6 − λ7)γh + (λ6 − λ8)µh + µλ6,

λ′
7 = −∂H

∂R
= µλ7,

λ′
8 = −∂H

∂D
= 0.

with the transversality conditions at time T: λi(T ) = 0, for all i=1,2,3,...,8. Furthermore
the corresponding optimal controls u∗(t), v∗(t), w∗

1(t) and w∗
2(t) are given by

u∗(t) = min{1,max(0, 1
NC5

(λ1 − λ2)βS(ζaA+ ζsI))},
v∗(t) = min{1,max(0, 1

C6
((λ1 − λ7)S))},

w∗
1(t) = min{1,max(0, 1

C7
((λ3 − λ5)A))}, and

w∗
2(t) = min{1,max(0, 1

C8
((λ4 − λ6) + ρ(λ6 − λ5))I)}.

Proof. We examine the necessary criteria for the control variables using the maximum
principle of Pontryagin for the system (3). To achieve this, for all t ∈ [0, T ], we define
the Hamiltonian H as

H = C1A + C2I + C3J + C4H + 1
2 (C5u

2 + C6v
2 + C7w

2
1 + C8w

2
2) + λ1(π − (1 −

u(t))β(ζaA+ ζsI)
S
N −µS−v(t)S)+λ2((1−u(t))β(ζaA+ ζsI)

S
N − (ω+µ)E)+λ3(θωE−

(ϵ+γa+µ)A−w1(t)A)+λ4((1−θ)ωE+ϵA−(λs+ηs+µs+µ)I−w2(t)I)+λ5(w1(t)A+
λsI − (ηj + γj + µ)J + ρw2(t)I) + λ6(ηsI + ηjJ − (γh + µh + µ)H + (1 − ρ)w2(t)I) +
λ7(γaA+ γjJ + γhH − µR+ v(t)S) + λ8(µsI + µhH).
Because of maximum principle of Pontryagin [30], there are co-states λ′

1, λ
′
2, λ

′
3,...,λ

′
8

that satisfying the following canonical equations
λ′
1 = −∂H

∂S , λ′
2 = −∂H

∂E , λ′
3 = −∂H

∂A , λ′
4 = −∂H

∂I ,...,+ λ′
8 = −∂H

∂D .
with transversality conditions λi(T ) = 0, for all i=1,2,3,...,8.
Now we get the optimal controls by using the optimal condition, ∂H

∂u = 0, ∂H
∂v = 0,

∂H
∂w1

= 0 and ∂H
∂w2

= 0.
∂H
∂u = C5u+ βλ1(ζaA+ ζsI)

S
N − λ2(ζaA+ ζsI)

S
N = 0.

Then u = βS(ζaA+ζsI)
NC5

(λ1 − λ2) at u = u∗.
∂H
∂v = C6v − λ1S + λ7)S = 0.
Then v = 1

C6
(λ1 − λ7)S at v = v∗.

∂H
∂w1

= C7w1 − λ3A+ λ5A = 0.

Then w1 = 1
C7

(λ3 − λ5)A at w1 = w∗
1 .

∂H
∂w2

= C8w2 − (λ4 − λ6)I − (λ5 − λ6)ρI = 0.

Then w2 = 1
C8

((λ4 − λ6) + ρ(λ6 − λ5))I at w1 = w∗
2 .

By taking the bounds for u(t), v(t), w1(t) and w2(t), we characterize the optimal controls:
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u∗(t) = min{1,max(0, 1
NC5

(λ1 − λ2)βS(ζaA+ ζsI))},
v∗(t) = min{1,max(0, 1

C6
((λ1 − λ7)S))},

w∗
1(t) = min{1,max(0, 1

C7
((λ3 − λ5)A))} and

w∗
2(t) = min{1,max(0, 1

C8
((λ4 − λ6) + ρ(λ6 − λ5))I)}.

5.2 Optimal control model simulation

The model simulation is carried out in MATLAB during the time interval [0,400] using
the model parameters listed in Table 1. The optimality system is solved by an iterative
method. The extended system (3) is computed by using forward difference approximation
[31] and then the adjoint system is calculated by using backward difference approxima-
tion. Choose C1 = 1, C2 = 1, C3 = 1, C4 = 1, C5 = 40, C6 = 50, C7 = 55 and C8 = 55
with the initial conditions S(0) = 1217378052, E(0) = 13000, A(0) = 5, I(0) = 2, J(0) =
1, H(0) = 1, R(0) = 0 and D(0) = 0. Figure 6 displays that variations in susceptible,
exposed, asymptomatic infected, symptomatic infected, isolated, hospitalized, recovered
and deceased populations within and without controls. This Figure is illustrated that
the infected populations with controls swiftly decreased in comparison to the populations
without controls, whereas the disinfected populations with controls rapidly increased in
comparison to the disinfected population without controls. The optimal control variable
profiles of u(t), v(t), w1(t) and w2(t) are shown in Figure 7. From this Figure, it can
be observed that, in comparison to w1(t) and w2(t) controls, the controls u(t) and v(t)
which related to awareness campaigns and vaccinating of susceptible population must
be kept at 1 over a longer period of time. Figure 8 illustrates the variations in control
profile related cost for each control increases. This Figure is demonstrated that the time
needed to maintain these controls at 1 decreases if the cost of each control variables is
risen.
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Figure 6: Variations in infected and disinfected populations with and without controls.
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Figure 7: Optimal control variable profiles u(t), v(t), w1(t) and w2(t).
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Figure 8: Variations in control variables with respect to relative costs.

16

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

105 Rao et al 90-108



6 Conclusion

When precise diagnostic tests or medical facilities were unavailable, compartmental
epidemiological models helped us understand how epidemic diseases spread and devise
preventative measures. In this paper, SEAIJHRD model was formulated to observe the
dissemination dynamics of COVID-19 spread in India. We first established the model’s
positivity and boundedness, and then, R0 value was determined to be 1.682. The in-
fection free equilibrium was both LAS and GAS for R0 < 1. By fitting the model to
reported COVID-19 data, the infection dissemination rate, hospitalization rates of symp-
tomatic infected and isolated populations were estimated. The sensitive analysis of R0

determined that both isolation rate (λs) and hospitalization rate (ηs) of symptomatic
individuals were more effective in reducing R0. In addition, the proposed model was
expanded to an optimal control problem by integrating four controls: 1) awareness pro-
grams through media and civil society that the susceptible population do not interact
with infected ones 2) vaccination process for susceptible population, and 3) urging the
infected population to go into isolation or join hospitals. The combination of four con-
trols had greater impact on reducing the number of infected individuals. Our model
concludes that vaccination for susceptible individuals, isolation of the infected popula-
tion, severe disinfection safeguards using, and social distance maintenance were effective
roles in controlling virus spread in a community and may even eradicate the corona virus
disease. In future, there will be possible to develop an epidemic model to examine the
impact of COVID-19 on HIV/AIDS or TB infected individuals.
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Abstract

Hundreds of special functions have been employed in applied mathe-
matics and computing sciences for many centuries due to their outstanding
features and wide range of applications. When considering the relevance
of these consequences in the evaluation of generalized integrals, applied
physics, and many engineering areas, the illustration of image formulas in-
volving one or more variable special functions is significant under various
definite integrals. In this paper, it is devoted to study the various inte-
gral identities involving incomplete Fox-Wright functions and Srivastava’s
polynomials. It is shown that the integrals of the Fox-Wright functions
are also the Fox-Wright functions but of greater order. Due to the fact
that our results are unified, a substantial number of new results can be
constructed as special instances from our leading results. The results
obtained in this work are general in nature and very useful in science,
engineering and finance.
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1 Introduction and Preliminaries

Several integral formulas have been established that include variety of special
functions and play a major role in certain physical problems [21]. Such functions,
in addition, are frequently connected to a variety of issues in various branches
of mathematics. Therefore, a notable researcher has produced several integral
formulas in turning a particular category of special functions [14], for instance
Nisar et al. [9] evaluated unified integrals associated with the Struve function;
Suthar et al. [19] evaluated unified integrals associated with the hypergeometric
function; Choi et al. [2], Choi et al. [3], Menaria et al. [8], Nisar et al. [9], Suthar
and Habenom [20] established certain integrals involving Bessel type functions.

In this study, under certain known integrals, we look at the possibility of
having some new integrals that include incomplete Fox-Wright functions as well
as family of polynomials. The integral formulas established in the present work
are very useful to obtain the transformations of various simpler special func-
tions. The findings from this research are of a generic nature and are extremely
beneficial in the fields of engineering, economics, and chemical sciences, digital
signals, image processing, finance and ship target recognition by sonar system
and radar signals.

For our ends, we begin by looking back on the preceding incomplete Fox-

Wright functions (see [18] also), pΨ
(γ)
q and pΨ

(Γ)
q , with both the p numerator

and q denominator parameters, introduced by Choi et. al [4]:

pΨ
(γ)
q

[
(f1,F1, x), (fj ,Fj)2, p ; z

(gj ,Gj)1, q ;

]
=

∞∑
ℓ=0

γ(f1 + F1ℓ, x)
∏p

j=2 Γ(fj + Fjℓ)∏q
j=1 Γ(gj +Gjℓ)

zℓ

ℓ!

(1)

and

pΨ
(Γ)
q

[
(f1,F1, x), (fj ,Fj)2, p ; z

(gj ,Gj)1, q ;

]
=

∞∑
ℓ=0

Γ(f1 + F1ℓ, x)
∏p

j=2 Γ(fj + Fjℓ)∏q
j=1 Γ(gj +Gjℓ)

zℓ

ℓ!
,

(2)

where, Fj , Gj ∈ R+, fj , gj ∈ C and series converges absolutely ∀z ∈ C when
∆ = 1 +

∑q
j=1 Gj −

∑p
j=1 Fj > 0 (see [7, 16]).

The incomplete Fox-Wright functions, pΨ
(γ)
q and pΨ

(Γ)
q fulfill the decompo-

sition formula given below:

pΨ
(γ)
q [z] + pΨ

(Γ)
q [z] = pΨq[z], (3)

where, pΨq[z] is Fox-Wright function [22].
Srivastava’s polynomials [15] or broader category of polynomials of index

n(n = 0, 1, 2, ...) are described as follows (see [1, 13] also):

Sm
n [x] =

[n/m]∑
s=0

(−n)ms

s!
An, s x

s, (4)
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where m ∈ Z+ and An, s(n, s ≥ 0) are real or complex numbers arbitrary con-
stant. The notations “[ . ]” and (−n)m, respectively represent greatest integer
function and Pochhammer symbol. Numerous well-known polynomials are pro-
vided by Srivastava’s polynomials as special cases for appropriately specializing
the coefficient An, s.

The rest of the paper is organized as follows. In section 2 incomplete Fox-
Wright function and Srivastava polynomial are combined, and various integrals
like: Oberhettinger type integrals, Lavoie type integral, MacRobert type in-
tegral and integral defined by Srivastava and Panda have been established. In
section 3, we develop the particular instances of the main findings by specializing
the parameters. In section 4, the paper is completed by presenting concluding
remark of the paper.

2 Main Results

In this part, we use some existing integral identities which shall be helpful to

develop new results involving incomplete Fox-Wright functions, pΨ
(γ)
q and pΨ

(Γ)
q .

2.1 Integral defined by Srivastava and Panda

Srivastava and Panda [17] defined and studied the following integral∫ ∞

0

uϖ−1(u+ v)−ς du =
Γ(ϖ)Γ(ς −ϖ)

Γ(ς)
vϖ−ς (5)

with ℜ(ς) > ℜ(ϖ) > 0.

Theorem 1. If ∆, κ, ϱ, ϑ, Ω > 0 and ℜ(ς) > ℜ(ϖ) > 0, then∫ ∞

0

uϖ−1(u+ v)−ς Sm
n [uκ(u+ v)−ϱ] pΨ

(Γ)
q [z uϑ(u+ v)−Ω ]du

= vϖ−ς

[n/m]∑
s=0

(−n)ms

s!
An, s v

s(κ−ϱ)×

p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς −ϖ + s(ϱ− κ), Ω − ϑ) ,

(ς + sϱ,Ω),

(fj ,Fj)2, p ; zvϑ−Ω
(gj ,Gj)1, q ;

]
. (6)

Proof. To demonstrate the outcome (6), we begin with L.H.S. Let us consider

I =

∫ ∞

0

uϖ−1(u+ v)−ς Sm
n [uκ(u+ v)−ϱ] pΨ

(Γ)
q [z uϑ(u+ v)−Ω ]du. (7)
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Using the definitions (2) and (4) in (7), we obtain

I =

∫ ∞

0

uϖ−1(u+ v)−ς

[n/m]∑
s=0

(−n)ms

s!
An, s u

sκ(u+ v)−sϱ

×
∞∑
ℓ=0

Γ(f1 + F1ℓ, x)
∏p

j=2 Γ(fj + Fjℓ)∏q
j=1 Γ(gj +Gjℓ)

zℓ uℓϑ(u+ v)−ℓΩ

ℓ!
du

=

[n/m]∑
s=0

(−n)ms

s!
An, s

∞∑
ℓ=0

Γ(f1 + F1ℓ, x)
∏p

j=2 Γ(fj + Fjℓ)∏q
j=1 Γ(gj +Gjℓ) ℓ!

zℓ

×
∫ ∞

0

uϖ+sκ+ℓϑ−1(u+ v)−ς−sϱ−ℓΩdu

=

[n/m]∑
s=0

(−n)ms

s!
An, s

∞∑
ℓ=0

Γ(f1 + F1ℓ, x)
∏p

j=2 Γ(fj + Fjℓ)∏q
j=1 Γ(gj +Gjℓ) ℓ!

zℓ

× Γ(ϖ + sκ + ℓϑ)Γ(ς + sϱ+ ℓΩ −ϖ − sκ − ℓϑ)

Γ(ς + sϱ+ ℓΩ)
vϖ−ς+s(κ−ϱ)+ℓ(ϑ−Ω), (using (5))

= vϖ−ς

[n/m]∑
s=0

(−n)ms

s!
An, s v

s(κ−ϱ)
∞∑
ℓ=0

Γ(f1 + F1ℓ, x)
∏p

j=2 Γ(fj + Fjℓ)∏q
j=1 Γ(gj +Gjℓ)

× Γ(ϖ + sκ + ℓϑ)Γ(ς −ϖ + s(ϱ− κ) + ℓ(Ω − ϑ))

Γ(ς + sϱ+ ℓΩ)

zℓ vℓ(ϑ−Ω)

ℓ!
.

Next, using (2) we achieved the desired outcome (6).

The proof of below theorem is similiar to Theorem 1, so it is claim here
without proof.

Theorem 2. If ∆, κ, ϱ, ϑ, Ω > 0 and ℜ(ς) > ℜ(ϖ) > 0, then∫ ∞

0

uϖ−1(u+ v)−ς Sm
n [uκ(u+ v)−ϱ] pΨ

(γ)
q [z uϑ(u+ v)−Ω ]du

= vϖ−ς

[n/m]∑
s=0

(−n)ms

s!
An, s v

s(κ−ϱ)×

p+2Ψ
(γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς −ϖ + s(ϱ− κ), Ω − ϑ) ,

(ς + sϱ,Ω),

(fj ,Fj)2, p ; zvϑ−Ω

(gj ,Gj)1, q ;

]
. (8)

4
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2.2 Oberhettinger type integral

Oberhettinger [11] gives an integral formula as (see [10] also):∫ ∞

0

uϖ−1
(
u+ k +

√
u2 + 2ku

)−ς

du = 2ςk−ς

(
k

2

)ϖ
Γ(2ϖ)Γ(ς −ϖ)

Γ(ϖ + ς + 1)
, (9)

with ϖ, ς ∈ C and 0 < (ϖ +ϖ) < (ς + ς).

Theorem 3. If ∆ > 0, κ > 0, ϑ > 0, ϖ, ς ∈ C and 0 < (ϖ+ϖ) < (ς + ς), then∫ ∞

0

uϖ−1(u+ k +
√
u2 + 2ku)−ς Sm

n [uκ ] pΨ
(Γ)
q [z uϑ]du

= 2ς(k)−ς(k/2)ϖ
[n/m]∑
s=0

(−n)ms

s!
An, s

(
k

2

)sκ
×

p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (2ϖ + 2sκ, 2ϑ), (ς −ϖ − sκ,−ϑ), (fj ,Fj)2, p ;

z
(
k
2

)ϑ
(1 +ϖ + ς + sκ, ϑ), (gj ,Gj)1, q ;

]
.

(10)

Proof. To demonstrate the outcome (10), we begin with L.H.S. Let us consider

I =

∫ ∞

0

uϖ−1(u+ k +
√
u2 + 2ku)−ς Sm

n [uκ ] pΨ
(Γ)
q [z uϑ]du. (11)

Using the definitions (2) and (4) in (11), after simplification we obtain

I =

[n/m]∑
s=0

(−n)ms

s!
An, s

∞∑
ℓ=0

Γ(f1 + F1ℓ, x)
∏p

j=2 Γ(fj + Fjℓ)∏q
j=1 Γ(gj +Gjℓ) ℓ!

zℓ

×
∫ ∞

0

uϖ+sκ+ℓϑ−1(u+ k +
√
u2 + 2ku)−ςdu

=

[n/m]∑
s=0

(−n)ms

s!
An, s

∞∑
ℓ=0

Γ(f1 + F1ℓ, x)
∏p

j=2 Γ(fj + Fjℓ)∏q
j=1 Γ(gj +Gjℓ) ℓ!

zℓ

× 2ςk−ς

(
k

2

)ϖ+sκ+ℓϑ
Γ(2ϖ + 2sκ + 2ℓϑ)Γ(ς −ϖ − sκ − ℓϑ)

Γ(1 +ϖ + ς + sκ + ℓϑ)
, (using (9)).

Next, using (2) we achieved the desired outcome (10).

The proof of below theorem is similiar to Theorem 3, so it is claim here
without proof.
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Theorem 4. If ∆ > 0, κ > 0, ϑ > 0, ϖ, ς ∈ C and 0 < (ϖ+ϖ) < (ς + ς), then∫ ∞

0

uϖ−1(u+ k +
√
u2 + 2ku)−ς Sm

n [uκ ] pΨ
(γ)
q [z uϑ]du

= 2ς(k)−ς(k/2)ϖ
[n/m]∑
s=0

(−n)ms

s!
An, s

(
k

2

)sκ
×

p+2Ψ
(γ)
q+1

[
(f1,F1, x), (2ϖ + 2sκ, 2ϑ), (ς −ϖ − sκ,−ϑ), (fj ,Fj)2, p ;

z
(
k
2

)ϑ
(1 +ϖ + ς + sκ, ϑ), (gj ,Gj)1, q ;

]
.

(12)

2.3 Lavoie type integral

Lavoie [5] gives an integral formula as:∫ ∞

0

uϖ−1
(
1− u

3

)2ϖ−1

(1− u)2ς−1
(
1− u

4

)ς−1

du =

(
2

3

)2ϖ
Γ(ϖ)Γ(ς)

Γ(ϖ + ς)
, (13)

with ϖ, ς ∈ C and ℜ(ϖ),ℜ(ς) > 0.

Theorem 5. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ϖ, ς ∈ C and ℜ(ϖ),ℜ(ς) >
0, then∫ ∞

0

uϖ−1
(
1− u

3

)2ϖ−1

(1− u)2ς−1
(
1− u

4

)ς−1

× Sm
n

[
uκ
(
1− u

3

)2κ
(1− u)2ϱ

(
1− u

4

)ϱ]
× pΨ

(Γ)
q

[
z uϑ

(
1− u

3

)2ϑ
(1− u)2Ω

(
1− u

4

)Ω]
du

=

(
2

3

)2ϖ [n/m]∑
s=0

(−n)ms

s!
An, s

(
2

3

)2sκ

× p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς + sϱ,Ω), (fj ,Fj)2, p ;

z
(
2
3

)2ϑ
(ϖ + ς + s(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
.

(14)

Theorem 6. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ϖ, ς ∈ C and ℜ(ϖ),ℜ(ς) >

6
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0, then∫ ∞

0

uϖ−1
(
1− u

3

)2ϖ−1

(1− u)2ς−1
(
1− u

4

)ς−1

× Sm
n

[
uκ
(
1− u

3

)2κ
(1− u)2ϱ

(
1− u

4

)ϱ]
× pΨ

(γ)
q

[
z uϑ

(
1− u

3

)2ϑ
(1− u)2Ω

(
1− u

4

)Ω]
du

=

(
2

3

)2ϖ [n/m]∑
s=0

(−n)ms

s!
An, s

(
2

3

)2sκ

× p+2Ψ
(γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς + sϱ,Ω), (fj ,Fj)2, p ;

z
(
2
3

)2ϑ
(ϖ + ς + s(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
.

(15)

The proof of above theorems are immediate consequences of definitions (1),
(2), (4) and (13), hence they are given without proof here.

2.4 MacRobert type integral

MacRobert [6] gives an integral formula as:∫ 1

0

uϖ−1(1− u)ς−1[au+ b(1− u)]−ϖ−ςdu =
1

aϖbς
Γ(ϖ)Γ(ς)

Γ(ϖ + ς)
(16)

with ℜ(ϖ), ℜ(ς) > 0 and |u| ≤ 1.

Theorem 7. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ℜ(ϖ), ℜ(ς) > 0 and |u| ≤ 1,
then∫ 1

0

uϖ−1(1− u)ς−1[au+ b(1− u)]−ϖ−ς

× Sm
n

[
uκ(1− u)ϱ[au+ b(1− u)]−κ−ϱ

]
× pΨ

(Γ)
q

[
z uϑ(1− u)Ω [au+ b(1− u)]−ϑ−Ω

]
du

=
1

aϖ bς

[n/m]∑
s=0

(−n)ms

s!
An, s

1

asκ bsϱ

× p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς + sϱ,Ω), (fj ,Fj)2, p ; z

aϑ bΩ(ϖ + ς + s(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
. (17)

Theorem 8. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ℜ(ϖ), ℜ(ς) > 0 and |u| ≤ 1,

7
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then∫ 1

0

uϖ−1(1− u)ς−1[au+ b(1− u)]−ϖ−ς

× Sm
n

[
uκ(1− u)ϱ[au+ b(1− u)]−κ−ϱ

]
× pΨ

(γ)
q

[
z uϑ(1− u)Ω [au+ b(1− u)]−ϑ−Ω

]
du

=
1

aϖ bς

[n/m]∑
s=0

(−n)ms

s!
An, s

1

asκ bsϱ

× p+2Ψ
(γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς + sϱ,Ω), (fj ,Fj)2, p ; z

aϑ bΩ(ϖ + ς + s(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
. (18)

The proof of above theorems are immediate consequences of definitions (1),
(2), (4) and (16), hence they are given without proof here.

3 Particular Cases

By appropriately specializing the coefficient An, s, specific special cases of de-
rived findings can be developed to identify many spectrums of the existing poly-
nomials. Only two special cases are given here and the remaining we kept for
interested readers. If we put m = 2 and An, s = (−1)s in the broad category

of polynomials (i.e., S2
n[x] = xn/2Hn

(
1

2
√
x

)
, where Hn(x) is Hermite polyno-

mial [1, 15] ) of above theorems, then we obtain the following respective corol-
laries.

Corollary 1. If ∆, κ, ϱ, ϑ, Ω > 0 and ℜ(ς) > ℜ(ϖ) > 0, then∫ ∞

0

uϖ+n
2 κ−1(u+ v)−ς−n

2 ϱ Hn

(
1

2
√
uκ(u+ v)−ϱ

)
pΨ

(Γ)
q [z uϑ(u+ v)−Ω ]du

= vϖ−ς n!

[n/2]∑
s=0

(−1)s

s!(n− 2s)!
vs(κ−ϱ)×

p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς −ϖ + s(ϱ− κ), Ω − ϑ) ,

(ς + sϱ,Ω),

(fj ,Fj)2, p ; zvϑ−Ω

(gj ,Gj)1, q ;

]
. (19)

8
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Corollary 2. If ∆ > 0, κ, ϱ, ϑ, Ω > 0 and ℜ(ς) > ℜ(ϖ) > 0, then∫ ∞

0

uϖ+n
2 κ−1(u+ v)−ς−n

2 ϱ Hn

(
1

2
√
uκ(u+ v)−ϱ

)
pΨ

(γ)
q [z uϑ(u+ v)−Ω ]du

= vϖ−ς n!

[n/2]∑
s=0

(−1)s

s!(n− 2s)!
vs(κ−ϱ)×

p+2Ψ
(γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς −ϖ + s(ϱ− κ), Ω − ϑ) ,

(ς + sϱ,Ω),

(fj ,Fj)2, p ; zvϑ−Ω

(gj ,Gj)1, q ;

]
. (20)

Corollary 3. If ∆ > 0, κ > 0, ϑ > 0, ϖ, ς ∈ C and 0 < (ϖ + ϖ) < (ς + ς),
then∫ ∞

0

uϖ+n
2 κ−1(u+ k +

√
u2 + 2ku)−ς Hn

(
1

2
√
uκ

)
pΨ

(Γ)
q [z uϑ]du

= 2ς(k)−ς(k/2)ϖ n!

[n/2]∑
s=0

(−1)s

s!(n− 2s)!

(
k

2

)sκ
×

p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (2ϖ + 2sκ, 2ϑ), (ς −ϖ − sκ,−ϑ), (fj ,Fj)2, p ;

z
(
k
2

)ϑ
(1 +ϖ + ς + sκ, ϑ), (gj ,Gj)1, q ;

]
.

(21)

Corollary 4. If ∆ > 0, κ > 0, ϑ > 0, ϖ, ς ∈ C and 0 < (ϖ + ϖ) < (ς + ς),
then∫ ∞

0

uϖ+n
2 κ−1(u+ k +

√
u2 + 2ku)−ς Hn

(
1

2
√
uκ

)
pΨ

(γ)
q [z uϑ]du

= 2ς(k)−ς(k/2)ϖ n!

[n/2]∑
s=0

(−1)s

s!(n− 2s)!

(
k

2

)sκ
×

p+2Ψ
(γ)
q+1

[
(f1,F1, x), (2ϖ + 2sκ, 2ϑ), (ς −ϖ − sκ,−ϑ), (fj ,Fj)2, p ;

z
(
k
2

)ϑ
(1 +ϖ + ς + sκ, ϑ), (gj ,Gj)1, q ;

]
.

(22)

Corollary 5. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ϖ, ς ∈ C and ℜ(ϖ),ℜ(ς) >

9
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0, then∫ ∞

0

uϖ+n
2 κ−1

(
1− u

3

)2(ϖ+n
2 κ)−1

(1− u)2(ς+
n
2 ϱ)−1

(
1− u

4

)ς+n
2 ϱ−1

×Hn

 1

2

√
uκ
(
1− u

3

)2κ
(1− u)2ϱ

(
1− u

4

)ϱ


× pΨ
(Γ)
q

[
z uϑ

(
1− u

3

)2ϑ
(1− u)2Ω

(
1− u

4

)Ω]
du

=

(
2

3

)2ϖ

n!

[n/2]∑
s=0

(−1)s

s!(n− 2s)!

(
2

3

)2sκ

× p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς + sϱ,Ω), (fj ,Fj)2, p ;

z
(
2
3

)2ϑ
(ϖ + ς + s(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
.

(23)

Corollary 6. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ϖ, ς ∈ C and ℜ(ϖ),ℜ(ς) >
0, then∫ ∞

0

uϖ+n
2 κ−1

(
1− u

3

)2(ϖ+n
2 κ)−1

(1− u)2(ς+
n
2 ϱ)−1

(
1− u

4

)ς+n
2 ϱ−1

×Hn

 1

2

√
uκ
(
1− u

3

)2κ
(1− u)2ϱ

(
1− u

4

)ϱ


× pΨ
(γ)
q

[
z uϑ

(
1− u

3

)2ϑ
(1− u)2Ω

(
1− u

4

)Ω]
du

=

(
2

3

)2ϖ

n!

[n/2]∑
s=0

(−1)s

s!(n− 2s)!

(
2

3

)2sκ

× p+2Ψ
(γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς + sϱ,Ω), (fj ,Fj)2, p ;

z
(
2
3

)2ϑ
(ϖ + ς + s(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
.

(24)

Corollary 7. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ℜ(ϖ), ℜ(ς) > 0 and

10
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|u| ≤ 1, then∫ 1

0

uϖ+n
2 κ−1(1− u)ς+

n
2 ϱ−1[au+ b(1− u)]−ϖ−ς−n

2 (κ+ϱ)

×Hn

(
1

2
√
uκ(1− u)ϱ[au+ b(1− u)]−κ−ϱ

)
× pΨ

(Γ)
q

[
z uϑ(1− u)Ω [au+ b(1− u)]−ϑ−Ω

]
du

=
n!

aϖ bς

[n/2]∑
s=0

(−1)s

s!(n− 2s)!

1

asκ bsϱ

× p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς + sϱ,Ω), (fj ,Fj)2, p ; z

aϑ bΩ(ϖ + ς + s(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
. (25)

Corollary 8. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ℜ(ϖ), ℜ(ς) > 0 and
|u| ≤ 1, then∫ 1

0

uϖ+n
2 κ−1(1− u)ς+

n
2 ϱ−1[au+ b(1− u)]−ϖ−ς−n

2 (κ+ϱ)

×Hn

(
1

2
√
uκ(1− u)ϱ[au+ b(1− u)]−κ−ϱ

)
× pΨ

(γ)
q

[
z uϑ(1− u)Ω [au+ b(1− u)]−ϑ−Ω

]
du

=
n!

aϖ bς

[n/2]∑
s=0

(−1)s

s!(n− 2s)!

1

asκ bsϱ

× p+2Ψ
(γ)
q+1

[
(f1,F1, x), (ϖ + sκ, ϑ), (ς + sϱ,Ω), (fj ,Fj)2, p ; z

aϑ bΩ(ϖ + ς + s(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
. (26)

Again, by setting m = 1 and An, s =
s!

(−n)ms
for s = r and An, s = 0 for

s ̸= r in the general class of polynomials (i.e., S1
n[x] = xr) of above theorems,

then we obtain the following respective corollaries.

Corollary 9. If ∆ > 0, κ, ϱ, ϑ, Ω > 0 and ℜ(ς) > ℜ(ϖ) > 0, then∫ ∞

0

uϖ+rκ−1(u+ v)−ς−rϱ
pΨ

(Γ)
q [z uϑ(u+ v)−Ω ]du

= vϖ−ς+r(κ−ϱ) × p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (ϖ + rκ, ϑ),

(ς + rϱ,Ω),

(ς −ϖ + r(ϱ− κ), Ω − ϑ) , (fj ,Fj)2, p ; zvϑ−Ω

(gj ,Gj)1, q ;

]
. (27)

11
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Corollary 10. If ∆ > 0, κ, ϱ, ϑ, Ω > 0 and ℜ(ς) > ℜ(ϖ) > 0, then∫ ∞

0

uϖ+rκ−1(u+ v)−ς−rϱ
pΨ

(γ)
q [z uϑ(u+ v)−Ω ]du

= vϖ−ς+r(κ−ϱ) × p+2Ψ
(γ)
q+1

[
(f1,F1, x), (ϖ + rκ, ϑ),

(ς + rϱ,Ω),

(ς −ϖ + r(ϱ− κ), Ω − ϑ) , (fj ,Fj)2, p ; zvϑ−Ω

(gj ,Gj)1, q ;

]
. (28)

Corollary 11. If ∆ > 0, κ > 0, ϑ > 0, ϖ, ς ∈ C and 0 < (ϖ +ϖ) < (ς + ς),
then∫ ∞

0

uϖ+rκ−1(u+ k +
√
u2 + 2ku)−ς

pΨ
(Γ)
q [z uϑ]du

= 2ς(k)−ς(k/2)ϖ+rκ×

p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (2ϖ + 2rκ, 2ϑ), (ς −ϖ − rκ,−ϑ), (fj ,Fj)2, p ;

z
(
k
2

)ϑ
(1 +ϖ + ς + rκ, ϑ), (gj ,Gj)1, q ;

]
.

(29)

Corollary 12. If ∆ > 0, κ > 0, ϑ > 0, ϖ, ς ∈ C and 0 < (ϖ +ϖ) < (ς + ς),
then∫ ∞

0

uϖ+rκ−1(u+ k +
√
u2 + 2ku)−ς

pΨ
(γ)
q [z uϑ]du

= 2ς(k)−ς(k/2)ϖ+rκ×

p+2Ψ
(γ)
q+1

[
(f1,F1, x), (2ϖ + 2rκ, 2ϑ), (ς −ϖ − rκ,−ϑ), (fj ,Fj)2, p ;

z
(
k
2

)ϑ
(1 +ϖ + ς + rκ, ϑ), (gj ,Gj)1, q ;

]
.

(30)

Corollary 13. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ϖ, ς ∈ C and
ℜ(ϖ),ℜ(ς) > 0, then∫ ∞

0

uϖ+rκ−1
(
1− u

3

)2(ϖ+rκ)−1

(1− u)2(ς+rϱ)−1
(
1− u

4

)ς+rϱ−1

× pΨ
(Γ)
q

[
z uϑ

(
1− u

3

)2ϑ
(1− u)2Ω

(
1− u

4

)Ω]
du =

(
2

3

)2(ϖ+rκ)

× p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (ϖ + rκ, ϑ), (ς + rϱ,Ω), (fj ,Fj)2, p ;

z
(
2
3

)2ϑ
(ϖ + ς + r(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
.

(31)

Corollary 14. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ϖ, ς ∈ C and
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ℜ(ϖ),ℜ(ς) > 0, then∫ ∞

0

uϖ+rκ−1
(
1− u

3

)2(ϖ+rκ)−1

(1− u)2(ς+rϱ)−1
(
1− u

4

)ς+rϱ−1

× pΨ
(γ)
q

[
z uϑ

(
1− u

3

)2ϑ
(1− u)2Ω

(
1− u

4

)Ω]
du =

(
2

3

)2(ϖ+rκ)

× p+2Ψ
(γ)
q+1

[
(f1,F1, x), (ϖ + rκ, ϑ), (ς + rϱ,Ω), (fj ,Fj)2, p ;

z
(
2
3

)2ϑ
(ϖ + ς + r(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
.

(32)

Corollary 15. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ℜ(ϖ), ℜ(ς) > 0 and
|u| ≤ 1, then∫ 1

0

uϖ+rκ−1(1− u)ς+rϱ−1[au+ b(1− u)]−ϖ−ς−r(κ+ϱ)

× pΨ
(Γ)
q

[
z uϑ(1− u)Ω [au+ b(1− u)]−ϑ−Ω

]
du =

1

aϖ+rκ bς+rϱ

× p+2Ψ
(Γ)
q+1

[
(f1,F1, x), (ϖ + rκ, ϑ), (ς + rϱ,Ω), (fj ,Fj)2, p ; z

aϑ bΩ(ϖ + ς + r(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
. (33)

Corollary 16. If ∆ > 0, κ > 0, ϱ > 0, ϑ > 0, Ω > 0, ℜ(ϖ), ℜ(ς) > 0 and
|u| ≤ 1, then∫ 1

0

uϖ+rκ−1(1− u)ς+rϱ−1[au+ b(1− u)]−ϖ−ς−r(κ+ϱ)

× pΨ
(γ)
q

[
z uϑ(1− u)Ω [au+ b(1− u)]−ϑ−Ω

]
du =

1

aϖ+rκ bς+rϱ

× p+2Ψ
(γ)
q+1

[
(f1,F1, x), (ϖ + rκ, ϑ), (ς + rϱ,Ω), (fj ,Fj)2, p ; z

aϑ bΩ(ϖ + ς + r(κ + ϱ), ϑ+Ω) , (gj ,Gj)1, q ;

]
. (34)

4 Concluding Remarks

The integral formulas concerning combination of a general polynomial system
and incomplete Fox-Wright functions are investigated and the outcomes are
described in terms of those other incomplete Fox-Wright functions. When x =
0, the incomplete Fox-Wright function mentioned by (2) reduces to the Fox-
Wright function pΨq(t), whose particular cases are known to the number of
special functions arising in the mathematical, physical and engineering sciences.
In addition, a huge number of recognized polynomials may be obtained as a
specific case of general class of polynomials by correctly specialization the factor
An, s. We conclude by stating that the findings mentioned here appear to be
of broad importance and can lead to multiple integrals for a particular class of
hypergeometric polynomials as well as other special functions, which we left for
interested readers.
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Abstract

In this study, a computational analysis has been made for a steady, incompressible, MHD
flow of the SWCNT-blood and the MWCNT-blood nanofluids past a non-linear stretch-
ing sheet of variable thickness. Darcy porous medium has been considered for fluid flow.
Consequences of homogeneous-heterogeneous chemical reactions on heat and mass transfer
along with Joule heating and viscous dissipation have been explored. Appropriate similar-
ity transformations have been applied to convert the governing equations of nanofluid flow
into non-linear ordinary differential equations. Galerkin finite element scheme has been
used to examine the resulting system with corresponding boundary conditions. Numerical
solutions of equations are demonstrated via graphs for various physical parameters, and
these graphs have also been analyzed. Comparison of velocity, thermal, and concentra-
tion profiles of SWCNT-blood and MWCNT-blood nanofluids has been established. It is
concluded that flow profiles of MWCNT-blood nanofluid dominate. Concentration profile
declines with homogeneous and heterogeneous reaction parameters whereas increases with
the Schimdt number for both nanofluids. Then, a comparison between present and the
existing results was made, and they are in good agreement. After that, several physical
quantities such as the local Nusselt number, skin friction coefficient, and concentration
rate are exhibited in a table.
Keywords: MHD; Carbon nanotubes; Nanofluid; Stretching sheet
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Nomenclatures

A⋆ Chemical species
a⋆ Concentration of chemical species A⋆

a0 Positive constant
A Ratio parameter
b Dimensionless constant
B Small constant
B0 Magnitude of magnetic field strength
B⋆ Chemical species
b⋆ Concentration of chemical species B⋆

Br Brinkman number
Cf Skin friction coefficient
cs Heat capacity of the solid surface
Cp Specific heat at constant pressure
DA, DB Diffusion coefficients
Ec Eckert number
F, f Dimensionless stream function
k1, ks Rate constants
k⋆, k Permeability of porous medium
K Homogeneous parameter
Ks Heterogeneous parameter
m Velocity power index parameter
M Melting parameter
Nux Local Nusselt number
Pr Prandtl number
Rem Magnetic parameter
Rex Local Reynolds number
Sc Schmidt number
T Temperature of the fluid within the boundary layer
Tw Melting surface temperature
T∞ Ambient temperature
T0 Temperature of the solid surface
u Velocity component along x−axis
Uw Non linear stretching velocity
Ue Free stream velocity
U∞, U0 Reference velocities
v Velocity component along y−axis
w1, w2, w3 Weight functions
x Direction parallel to the fluid flow
y Direction perpendicular to the fluid flow
Greek symbols
α Thermal diffusivity
α⋆ Wall thickness parameter
δ Ratio of diffusion coefficients
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ρ Density
σe Electrical conductivity
κ Thermal conductivity
λ Latent heat of the nanofluid
ψ Stream function
µ Viscosity
ν Kinematic viscosity
ϑ, Φ, φ Dimensionless concentration
ϕ Solid volume fraction
ψs Shape function
Θ, θ Dimensionless temperature
ξ Similarity variable
Subscripts
bf Base fluid
nf Nanofluid
CNT Carbon nanotubes
Superscripts
′ Derivative of the function

1 Introduction

The investigation of fluid behavior of the electrically conducting fluid in a magnetic field is
known as magnetohydrodynamics (MHD). The investigation of MHD has been fascinating
due to its extensive range of applications in various fields and the property of good heat
transfer performance. The applications of MHD flow can be seen in petroleum produc-
tion, turbines, liquid metal blankets, tritium breeding, and astrophysics sensors. Davidson
(2001) appraised the MHD flow problems and explored the basics of MHD and its appli-
cations in engineering. After that, Bozkaya and Tezer-Sezgin (2007) brought an elemental
solution for equations, which includes convection and diffusion. The impacts of thermal
radiation on an unsteady flow are illustrated by Turkyilmazoglu (2011). Ellahi (2013)
investigated the MHD non-Newtonian fluid flow. An MHD stagnation-point flow over a
porous sheet has been examined by Jalilpour et al. (2014). Shehzad et al. (2015) perceived
the impacts of convective heat on an MHD nanofluid flow. Numerical analysis of the MHD
stagnation-point flow of a micropolar nanofluid using the Runge-Kutta fourth-order has
been performed by Rashidi et al. (2016). Chaudhary et al. (2018) also discussed the MHD
flow over a stretching sheet under the Newtonian and convective boundary restrictions.
Chaudhary and Kanika (2020) scrutinized viscous dissipation and joule heating effects in
a Marangoni boundary layer flow of an electrically conducting fluid in a magnetic field.
Mehta et al. (2022) explored the MHD stagnation point stream flow past a vertical porous
sheet along with heat generation, viscous dissipation, Joule heating, and thermal effect.
Recently, Jain et al. (2023) investigated the MHD spinning fluid flow over a rotating disk
with Brownian motion and inverse linear angular velocity.

Nowadays, the applications of nanoproducts are seen significantly in industries, while
carbon nanotubes (CNTs) are among them. CNTs having high specific surface areas, high
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mechanical strength, and a good conductor of electricity have appreciable applications
in industries and other areas, for instance, medicine, sensors, delivery of DNA into cells,
and composite materials. Initially, CNTs were explored by Lijima (1991). Wen and Ding
(2004) tested the aqueous suspension of carbon nanotubes (CNTs) experimentally and
found significant results in enhancing thermal conductivity. After that, Ding et al. (2006)
examined the heat transfer capabilities of multi-walled CNT nanofluids. Many studies
found that the surface friction is inferior for CNTs, which has been experimentally verified
by Whiteby and Quirke (2007). Wang et al. (2008) studied the thermal effects on the
vibration of CNTs delegating fluid using the Bernoulli-Euler beam model. The authentic-
ity of different types of theoretical beam models is explored by Wang (2010). Khan et al.
(2013) discussed the fluid flow and heat transfer in CNTs nanofluid by applying the Navier
slip boundary condition. Further, the Marangoni convective MHD flow with viscous dissi-
pation and joule heating is illustrated by Mahanthesh et al. (2017). Recently, Chaudhary
and Kanika (2019) have numerically illustrated the SWCNT and MWCNT-based MHD
flow.

To increase heat transfer capabilities, many efforts have been made by researchers.
For the same, Choi and Eastman (1995) developed the notion of nanofluid. Nanofluid
is a fluid composed of nanometer-sized solid nanoparticles and the base fluid. These
nanoparticles are generally made of metals, oxides, and carbides such as Cu, Ag, and
CuO. In various investigations, it has been spotted that the thermal conductivity of heat
transfer fluid is enhanced when solid nanoparticles are added to traditional fluids. Due
to the improved heat transfer capabilities, nanofluids have many applications in cancer
therapy, microelectronics, and biomedicine. Initially, Zhou and Ni (2008) performed an
experimental study to compute the specific heat capacity of nanofluid and indicated that
nanoparticles and base fluid remain in equilibrium in the nanofluid system. The steady
boundary layer of a nanofluid over a moving flat plate has been investigated analytically by
Bachok et al. (2010). Ahmed et al. (2011) paid their attention to the enlargement in heat
transfer in a corrugated channel due to nanofluids. They illustrated it for distinct values of
the Reynolds number. The unsteady mixed convection flow and heat transfer of nanofluids
past a stretching surface have been numerically analyzed by Mahdy (2012). Rashidi et al.
(2014) demonstrated the Buoyancy impact on the MHD flow of an incompressible viscous
nanofluid, and non-linear governing equations are numerically handled by the shooting
technique. The impact of thermal radiation on an MHD nanofluid flow was explored
by Sheikholeslami et al. (2015). They also investigated the heat transfer between two
parallel plates. Further, Turkyilmazoglu (2016) explored the efficiency of direct absorption
solar collectors using nanofluid, and Ghalandari et al. (2019) illustrated the numerical
simulation of nanofluid flow. Chaudhary (2022) examined the impact of nanoparticle shape
over a moving plate. The effect of thermal radiation, convective boundary condition, and
Brownian motion on the electro-magnetohydrodynamic(EMHD) flow of nanofluid with the
Darcy-Forchheimer porous medium has been reported by Chaudhary and Chouhan (2023).
Jangid et al. (2023) discussed the MHD flow of Williamson nanofluid past a permeable
stretching sheet with buoyancy force, thermal radiation, and Joule heating.

The exploration of heat transformation through the boundary layer over a stretching
sheet has attracted scientists to study the important concept due to its many practical uses
in diverse fields of science and engineering. Some stretching surface applications include
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thermal insulation, solar collectors, glass-fiber and paper production, food processing, and
plasma studies. Initially, flow along a stretching sheet was reported by Crane (1970).
Further, Mahapatra and Gupta (2002) investigated heat transfer in stagnation-point flow
due to a stretching sheet stretched in its plane. The hydromagnetic flow of a micropolar
fluid past a stretching surface is explored by Kumar (2009), and for solving the system of
governing equations, he used the finite element method. Bachok et al. (2010) reported the
steady stagnation-point flow numerically along with a linear stretching/shrinking sheet. A
dusty fluid flow over a stretching sheet is illustrated by Gireesha et al. (2011) while consid-
ering the influence of heat source/sink. Noghrehabadi et al. (2013) discussed the impacts
of thermal convective boundary restrictions on boundary layer flow and heat transfer of
nanofluids via a stretching sheet. Further, Noor et al. (2015) and Hsiao (2016) paid their
attention to the mixed convection stagnation point flow having slip boundaries by taking
different stretching sheets. After that, Chaudhary and Choudhary (2018) illustrated a
flow problem along with a stretching sheet with thermal radiation. Recently, Kumar et al.
(2023) reported the MHD flow of micropolar liquid over a porous stretching sheet along
with heat source, thermal radiation, and slip boundary conditions.

The review of the above-mentioned literature concludes that the study of the influence
of homogeneous-heterogeneous chemical reaction on heat and mass transfer of an electro-
hydrodynamic flow of nanofluid over a non-linear stretching sheet has not been explored
yet. The thickness of the sheet is taken to be variable. The effect of Joule heating and
viscous dissipation on heat transfer has been considered. The suspension of SWCNT and
MWCNT in human blood has been taken into account. The CNTs have been chosen as
nanoparticles due to their high thermal conductivity, exceptional corrosion resistance, and
mechanical strength. The Galerkin finite element method is employed to numerically solve
the system of equations. The consequences of various controlling parameters are shown
visually for velocity, thermal, and concentration profiles. The numeric values of the local
skin friction coefficient, Nusselt number, and Sherwood number are presented in the table.
The accuracy of the results obtained in the present study is verified with already published
work.

2 Problem description

Let us take a steady, two-dimensional, electro-hydrodynamic boundary layer flow of vis-
cous, incompressible nanofluid over a porous non-linear stretching sheet with a variable
thickness y = B(x + b)

1−m
2 . B is a small constant, b is a non-dimensional constant, and

m is a velocity power index. In addition, the flow is affected by viscous dissipation and
ohmic heating. A combination of homogeneously distributed nanoparticles SWCNT and
MWCNT in the base fluid− human blood is used as a nanofluid. As demonstrated in Fig.
1, a cartesian coordinate system (x, y) is considered in which carbon nanotubes− SWCNT
and MWCNT are also shown symbolically. The x−axis is taken in the direction of motion
of the non-linear stretching surface, and the y−axis is vertical. The flow is bounded in
the upper half-plane y > 0. A magnetic field of constant strength B0 is supposed to be
used orthogonal to the surface. The induced magnetic field is negligible if the magnetic
Reynolds number is minimal. The non-linear stretching velocity Uw = U0(x+ b)

m and free
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stream velocity Ue = U∞(x+ b)m are considered, here U0 and U∞ are the reference veloci-
ties. Melting surface temperature Tw is taken to be less than the ambient temperature T∞.
The heat produced throughout the irreversible chemical reaction is not taken into account.

The homogeneous cubic autocatalytic reaction is

A⋆ + 2B⋆ → 3B⋆, rate = k1a
⋆b⋆

2

(1)

while on the catalyst surface, the heterogeneous reaction of the first order is as

A⋆ → B⋆, rate = ksa
⋆ (2)

here a⋆ and b⋆ indicate the concentrations of chemical species A⋆ and B⋆, respectively, while
k1 and ks are the rate constants. The reaction rate tends to be zero at the external and
outer edges of the boundary layer flow. Under these assumptions, the governing equations
for the problem are described as

∂u

∂x
+
∂v

∂y
= 0 (3)

u
∂u

∂x
+ v

∂u

∂y
= Ue

dUe
dx

+ νnf

[
∂2u

∂y2
− u

k
− (σe)nfB

2
0

µnf
(u− Ue)

]
(4)

u
∂T

∂x
+ v

∂T

∂y
=

1

(ρCp)nf

[
κnf

∂2T

∂y2
+ µnf

(
∂u

∂y

)2

+ (σe)nfB
2
0(u− Ue)

2

]
(5)

u
∂a⋆

∂x
+ v

∂a⋆

∂y
= DA

∂2a⋆

∂y2
− k1a

⋆b⋆2 (6)

u
∂b⋆

∂x
+ v

∂b⋆

∂y
= DB

∂2b⋆

∂y2
+ k1a

⋆b⋆2 (7)

with the boundary conditions

y = B(x+ b)(1−m)/2 : u = Uw(x), v = 0, T = Tw,

κnf
∂T

∂y
= ρnf [λ+ cs(Tw − T0)] v,

DA
∂a⋆

∂y
= ksa

⋆, DB
∂b⋆

∂y
= −ksa⋆

y → ∞ : u→ Ue(x), T → T∞, a⋆ → a0, b⋆ → 0

(8)

In the above equation, subscript nf indicates the thermophysical characteristics of nanofluid,
u, and v denote the velocity components along the x− and y− directions, respectively,
ν(= µ

ρ
) is the kinematic viscosity, µ is the dynamic viscosity, ρ is the density, k is the

permeability of the porous medium, σe stands for the electrical conductivity, T indicate
the temperature of nanofluid, Cp stands for the specific heat at constant pressure, κ is in-
dicating the thermal conductivity, DA, and DB indicate diffusion coefficients, λ represent
the latent heat of the nanofluid, cs, and T0 are the heat capacity of the solid surface and
temperature, respectively, and a0 is a positive constant.
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Based on the theoretical model, physical properties of the CNTs−human blood nanofluid
(represented in Table I) are mentioned by Khalid et al. (2018) as

µnf
µbf

=
1

(1− ϕ)5/2
(9)

ρnf
ρbf

= 1− ϕ+
ρCNT
ρbf

ϕ (10)

(σe)nf
(σe)bf

= 1 +
3
[
(σe)CNT

(σe)bf
− 1

]
ϕ

2 + (σe)CNT

(σe)bf
−
[
(σe)CNT

(σe)bf
− 1

]
ϕ

(11)

(ρCp)nf
(ρCp)bf

= 1− ϕ+
(ρCp)CNT
(ρCp)bf

ϕ (12)

κnf
κbf

=
1− ϕ+ 2 κCNT

κCNT−κbf
ln

κCNT+κbf
2κbf

ϕ

1− ϕ+ 2
κbf

κCNT−κbf
ln

κCNT+κbf
2κbf

ϕ
(13)

where subscripts bf and CNT are used for base fluid human blood and carbon nanotubes,
respectively, and ϕ indicates the volume fraction of CNTs.

3 Transformations

Utilizing the non-dimensional variables given by Hayat et al. (2016) are as follows.

ψ =

[
2

m+ 1
νbfU0(x+ b)m+1

] 1
2

F (ξ), ξ =

[
m+ 1

2

U0(x+ b)m−1

νbf

] 1
2

y,

T = Tw + (T∞ − Tw)Θ(ξ), a⋆ = a0 ϑ(ξ), b⋆ = a0Φ(ξ)

(14)

here ψ(x, y) denotes the stream function, which identically satisfies the mass conservation
Eq. (3) along with u = ∂ψ

∂y
and v = −∂ψ

∂x
, F (ξ) is the dimensionless stream function, ξ is

the similarity variable, Θ(ξ) is the dimensionless temperature and, ϑ(ξ) and φ(ξ) are the
dimensionless concentrations. Because of the above similarity variables Eq. (14), the Eqs.
(4) to (8) are reduced to

1

(1− ϕ)5/2
F ′′′ +

(
1− ϕ+

ρCNT
ρbf

ϕ

)(
FF ′′ − 2m

1 +m
F ′2 +

2m

1 +m
A2

)
− 2k⋆

1 +m

1

(1− ϕ)5/2
F ′ − (σe)nf

(σe)bf

2

1 +m
Rem (F ′ − A) = 0

(15)

κnf
κbf

Θ′′ + Pr

[
1− ϕ+

(ρCp)CNT
(ρCp)bf

ϕ

]
FΘ′ +

1

(1− ϕ)5/2
BrF ′′2

+
(σe)nf
(σe)bf

2

1 +m
BrRem(F

′ − A)
2
= 0

(16)

1

Sc
ϑ′′ + Fϑ′ − 2K

1 +m
Φ2ϑ = 0 (17)

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

130 Chaudhary et al 124-167



δ

Sc
Φ′′ + FΦ′ +

2K

1 +m
ϑΦ2 = 0 (18)

with the transformed boundary conditions

α⋆ = B

(
1 +m

2

U0

νbf

) 1
2

: F =
1−m

1 +m
α⋆, F ′ = 1, Θ = 0,

κnf
κbf

MΘ′ + Pr

(
1− ϕ+

ρCNT
ρbf

ϕ

)(
F − 1−m

1 +m
α⋆

)
= 0,

ϑ′ =

(
2

1 +m

) 1
2

Ksϑ, Φ′ = −
(

2

1 +m

) 1
2 Ks

δ
ϑ

α⋆ → ∞ : F ′ → A, Θ → 1, ϑ→ 1, Φ → 0

(19)

In the above expressions, prime ( ′ ) represents the derivatives of functions with respect

to ξ, A (= U∞
U0

) is the ratio parameter, k⋆
[
=

νbf
kU0(x+b)m−1

]
is representing the permeability

of the porous media, Rem

[
=

(σe)bfB0
2(x+b)

ρbfUw

]
is the magnetic parameter, Pr

[
=

(
νρCp

κ

)
bf

]
is

the Prandtl number, Br (= PrEc) is the Brinkman number, Ec
[
= U2

w

(Cp)bf (T∞−Tw)

]
stands

for the Eckert number, Sc
(
=

νbf
DA

)
indicates the Schmidt number, K

[
= k1a02(x+b)

Uw

]
is the

homogeneous parameter, δ
(
= DB

DA

)
is the ratio of diffusion coefficients, α⋆ (= ξ) is the wall

thickness parameter,M
[
=

(Cp)bf (T∞−Tw)

[λ+cs(Tw−T0)]

]
is the melting parameter, andKs

{
= ks

DA

[
νbf (x+b)

Uw

] 1
2

}
is the heterogeneous parameter. Additionally, in many applications, the diffusion coeffi-
cients DA and DB are equal, i.e., δ = 1. Eqs. (17) and (18) are reduced to

ϑ′′ + ScFϑ′ − 2

1 +m
K Sc ϑ(1− ϑ)2 = 0 (20)

with ϑ+ Φ = 1
Applying F (ξ) = f(ξ − α⋆) = f(η), Θ(ξ) = θ(ξ − α⋆) = θ(η)

and Φ(ξ) = φ(ξ − α⋆) = φ(η)
Eqs. (15), (16) and (20) with boundary condition Eq. (19) give

1

(1− ϕ)5/2
f ′′′ +

(
1− ϕ+

ρCNT
ρbf

ϕ

)(
ff ′′ − 2m

1 +m
f ′2 +

2m

1 +m
A2

)
− 2k⋆

1 +m

1

(1− ϕ)5/2
f ′ − (σe)nf

(σe)bf

2

1 +m
Rem (f ′ − A) = 0

(21)

κnf
κbf

θ′′ + Pr

[
1− ϕ+

(ρCp)CNT
(ρCp)bf

ϕ

]
fθ′ +

1

(1− ϕ)5/2
Brf ′′2

+
(σe)nf
(σe)bf

2

1 +m
BrRem(f

′ − A)
2
= 0

(22)

φ′′ + Sc fφ′ − 2

1 +m
K Sc φ(1− φ)2 = 0 (23)

8
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along with the associated boundary conditions

η = 0 : f =
1−m

1 +m
α⋆, f ′ = 1, θ = 0,

κnf
κbf

Mθ′ + Pr

(
1− ϕ+

ρCNT
ρf

ϕ

)(
f − 1−m

1 +m
α⋆

)
= 0,

φ′ =

(
2

m+ 1

)1/2

Ksφ

η → ∞ : f ′ → A , θ → 1 , φ→ 1

(24)

here, prime represents the differentiation with respect to η.

4 Physical Quantities

Here, we discuss the physical quantities such as the local skin friction coefficient (Cf ) and
local Nusselt number (Nux), which indicate the flow and heat transfer, respectively and
symbolic as (mathematical notation)

Cf =
2µnf

ρbfUw
2

(
∂u

∂y

)
y=B(x+b)(1−m)/2

, Nux = − κnf (x+ b)

κbf (T∞ − Tw)

(
∂T

∂y

)
y=B(x+b)(1−m)/2

(25)

By employing the similarity transformations Eq. (14), the Eq. (25) can be expressed as

Cf

Re
−1/2
x

=
2

(1− ϕ)5/2

(
1 +m

2

)1/2

f ′′(0),
Nux

Re
1/2
x

= −κnf
κbf

(
1 +m

2

)1/2

θ′(0)

(26)

where, Rex

[
= Uw(x+b)

νbf

]
is the local Reynolds number.

5 Computational method and accuracy

Eqs. (21) to (23) with the boundary conditions Eq. (24) are handled numerically by em-
ploying the Galerkin finite element scheme as depicted by the flow diagram in Fig. 2, which
is a well-known computational approach for handling differential equations. The basic idea
behind this technique is that the whole domain is discretized into linear elements, and af-
ter that, equations are obtained for each element. Furthermore, element equations are
assembled, and the equations have been reduced by applying boundary conditions. The
remaining equations are handled by using the appropriate technique.

Assume
f ′ = p (27)

9
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then Eqs. (21) to (23) are reduced into the below form

1

(1− ϕ)5/2
p′′ +

(
1− ϕ+

ρCNT
ρbf

ϕ

)(
fp′ − 2m

1 +m
p2 +

2m

1 +m
A2

)
− 2k⋆

1 +m

1

(1− ϕ)5/2
p− (σe)nf

(σe)bf

2

1 +m
Rem (p− A) = 0

(28)

κnf
κbf

θ′′ + Pr

[
1− ϕ+

(ρCp)CNT
(ρCp)bf

ϕ

]
fθ′ +

1

(1− ϕ)5/2
Br p′

2

+
(σe)nf
(σe)bf

2

1 +m
BrRem(p− A)2 = 0

(29)

φ′′ + Sc fφ′ − 2K

1 +m
Sc φ(1− φ)2 = 0 (30)

and the changed boundary conditions are

η = 0 : f =

(
1−m

1 +m

)
α⋆, p = 1, θ = 0, φ′ =

(
2

1 +m

)1/2

Ksφ,

κnf
κbf

Mθ′ +

(
1− ϕ+

ρCNT
ρbf

ϕ

)
Pr

[
f − 1−m

1 +m
α⋆

]
= 0

η → ∞ : p→ A, θ → 1, φ→ 1

(31)

If the values of η are taken larger than 6, then there are no further changes in the solutions
of the system. Keeping this fact and limitations of computation, without loss of generality,
η → ∞ is taken numerically as ηmax = 6. The flow domain is divided into 1,000 linear
elements of equal sizes. A typical element (ηr, ηr+1) (say) is considered over this element,
Eqs. (27) to (30) can be written in the variational form and are defined as follows∫ ηr+1

ηr

w1(f
′ − p) = 0 (32)

∫ ηr+1

ηr

w2

[
1

(1− ϕ)5/2
p′′ +

(
1− ϕ+

ρCNT
ρbf

ϕ

)(
fp′ − 2m

1 +m
p2 +

2m

1 +m
A2

)

− 2k⋆

1 +m

1

(1− ϕ)5/2
p− (σe)nf

(σe)bf

2

1 +m
Rem (p− A)

]
dη = 0

(33)

∫ ηr+1

ηr

w3

{
κnf
κbf

θ′′ + Pr

[
1− ϕ+

(ρCp)CNT
(ρCp)bf

ϕ

]
fθ′ +

1

(1− ϕ)5/2
Br p′

2

+
(σe)nf
(σe)bf

2

1 +m
BrRem(p− A)2

}
dη = 0

(34)

∫ ηr+1

ηr

w4

[
φ′′ + Sc fφ′ − 2K

1 +m
Sc φ(1− φ)2

]
dη = 0 (35)

10
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here w1, w2, w3, and w4 are weight functions corresponding to the functions f , p, θ, and
φ, respectively and these functions are given by:

f =
2∑
t=1

ftψt, p =
2∑
t=1

ptψt, θ =
2∑
t=1

θtψt,

φ =
2∑
t=1

φtψt

(36)

While w1 = w2 = w3 = w4 = ψs, s = 1,2,3,4
The shape function ψs, for a typical element (ηr , ηr+1), is defined as:

ψ1
(r) =

ηr+1 − η

ηr+1 − ηr
, ψ2

(r) =
η − ηr
ηr+1 − ηr

, ηr ≤ η ≤ ηr+1 (37)

In matrix form the system of Eqs. (32)-(35) are represented by
[A11] [A12] [A13] [A14]
[A21] [A22] [A23] [A24]
[A31] [A32] [A33] [A34]
[A41] [A42] [A43] [A44]




{f}
{p}
{θ}
{φ}

 =


{b1}
{b2}
{b3}
{b4}

 (38)

where [Aij] and {bi}, i = 1, 2, 3, 4, are as follows:

A11
st =

∫ ηr+1

ηr

ψs
dψt
dη

dη,

A12
st = −

∫ ηr+1

ηr

ψsψtdη,

A13
st = A14

st = A21
st = 0,

A22
st =

∫ ηr+1

ηr

[
− 1

(1− ϕ)5/2
dψs
dη

dψt
dη

+

(
1− ϕ+

ρCNT
ρbf

ϕ

)(
f̄ψs

dψt
dη

− 2m

1 +m
p̄ψsψt

)
− 2k⋆

1 +m

1

(1− ϕ)5/2
ψsψt −

(σe)nf
(σe)bf

2

1 +m
Remψsψt

]
dη,

A23
st = A24

st = A31
st = 0,

A32
st =

∫ ηr+1

ηr

{
1

(1− ϕ)5/2
Br p̄′ ψs

dψt
dη

+
(σe)nf
(σe)bf

2

1 +m
BrRem (p̄− 2A)ψsψt

}
dη,
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A33
st =

∫ ηr+1

ηr

{
−κnf
κbf

dψs
dη

dψt
dη

+ Pr

[
1− ϕ+

(ρCp)CNT
(ρCp)bf

ϕ

]
f̄ψs

dψt
dη

}
dη,

A34
st = A41

st = A42
st , A

43
st = 0,

A44
st =

∫ ηr+1

ηr

{
−dψs
dη

dψt
dη

+ Scf̄ψs
dψt
dη

− 2K

1 +m
Sc [(φ̄− 2) φ̄ψsψt + ψsψt]

}
dη

and

b1s = 0,

b2s = − 1

(1− ϕ)5/2

(
ψs
dp

dη

)ηr+1

ηr

− (σe)nf
(σe)bf

2

1 +m
RemA

∫ ηr+1

ηr

ψsdη

− 2m

1 +m
A2

(
1− ϕ+

ρCNT
ρf

ϕ

)∫ ηr+1

ηr

ψsdη,

b3s = −κnf
κbf

(
ψs
dθ

dη

)ηr+1

ηr

− (σe)nf
(σe)bf

2

1 +m
BrRemA

2

∫ ηr+1

ηr

ψsdη,

b4s = −
(
ψs
dφ

dη

)ηr+1

ηr

,

Where

f̄ =
s=2∑
s=1

f̄sψs , p̄ =
s=2∑
s=1

p̄sψs,

p̄′ =
s=2∑
s=1

p̄′sψs , φ̄ =
s=2∑
s=1

φ̄sψs

As mentioned, the whole domain is divided into 1,000 linear elements of equal sizes. There
are 1001 nodes, and four functions are to be evaluated at each node. Hence, after assem-
bling all the element equations, a matrix is obtained with the order of 4004× 4004. After
implementing boundary conditions, the system has 3,996 equations that are solved by the
Gauss elimination technique while the accuracy of 10−7 is maintained.

To ensure precision, credibility, and consistency, we have compared our numerical out-
comes with the reported data of Hayat et al. (2016) by imposing some conditions. The
comparative results have been shown in Table II, and the accuracy of that validated our
numerical computations.

6 Analysis of the Results

This part demonstrates the graphical rendition for viewing the effects of sundry parameters
on the velocity, temperature, and concentration distributions of the SWCNT (single-wall
carbon nanotube) and MWCNT (multi-wall carbon nanotube) suspended nanofluids by
taking base fluid as blood. Also, the values of wall shear stress f ′′(0), wall heat flux θ′(0)
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and concentration rate φ′(0), corresponding to changes in physical parameters like power
index parameter (m), wall thickness parameter (α⋆), ratio parameter (A), volume fraction
parameter (ϕ), permeability parameter (k⋆), magnetic parameter (Rem), the Brinkman
number (Br), the heterogeneous parameter (Ks), the Schmidt number (Sc), and the ho-
mogeneous parameter (K), keeping the Prandtl number Pr(= 25) as constant are shown
in Table III. Other parameters are taken as constant for unveiling the effect of specific
parameters. It is noticed that for the considered profiles as the velocity, temperature, and
concentration, MWCNT nanofluid is dominated when compared with SWCNT nanofluid.

Figs. 3−5 are sketched to see the behavior of flow velocity f ′(η), temperature θ(η), and
concentration φ(η) distributions for various values of power index parameter m, respec-
tively. We notice that velocity f ′(η) decreases along with the increment in power index
parameter m when η < 1.5 for both SWCNT and MWCNT, while the opposite behavior
can be seen when η ≥ 1.5. Increasing the power index parameter m reduces temperature
distribution for SWCNT and MWCNT. The concentration profile is shown to have incre-
ments along with incremental changes in power index parameter m for both SWCNT and
MWCNT. Physically, the enhancement in the power index parameter leads to an increase
in the wall thickness parameter. Due to this, a reduction in the stretching of the surface
occurs; hence the flow velocity f ′(η) decreases when η < 1.5, while if η ≥ 1.5, there is an
increment in the stretching of the surface, so the flow velocity f ′(η) increases. Further-
more, the reduction in the stretching surface leads to a reduction in the thermal boundary
layer. Therefore the decrement happens in temperature. Similarly, the stretching of the
surface is also a reason behind the increment in concentration profile.

The effect of wall thickness parameter α⋆ on the velocity f ′(η), temperature θ(η), and
concentration φ(η) profiles are displayed in Figs. 6−8, respectively. The velocity of the
fluid f ′(η) enlarges along with the rising values of the wall thickness parameter α⋆, while
a reduction in both temperature θ(η) and concentration φ(η) is observed for both types
of nanofluids. As the wall thickness parameter enhances, the dynamic viscosity increases
and as a consequence, velocity f ′(η) grows significantly. In contrast, a reduction can be
seen in temperature θ(η) and concentration φ(η).

Figs. 9−11 portray the impact of ratio parameter A on the flow field f ′(η), temperature
field θ(η), and concentration field φ(η), respectively. It is noted that the flow field f ′(η),
temperature field θ(η), and concentration field φ(η) enhance along with the increasing
values of ratio parameter A for both types of nanofluids. Due to the enlargement in the
ratio parameter, the free stream velocity increases to the stretching velocity. Hence, the
flow changed in inverted boundary layer fabrication, resulting in the rise in velocity profile
f ′(η). At the same time, dynamic pressure increment leads to a fall off in the temperature
profile θ(η).

The impacts of various values of volume fraction parameter ϕ on the dimensionless
velocity f ′(η), temperature θ(η), and concentration φ(η) are plotted in Figs. 12−14, re-
spectively. These figures have shown that velocity f ′(η) and concentration φ(η) have
the behavior of acceleration with the enhancing values of volume fraction parameter ϕ.
In contrast, the dimensionless temperature decelerates for SWCNT and MWCNT. The
nanoparticle volume fraction is directly related to convective flow, so velocity increment
happens. Due to the convection effect, the heat transfers from the hot fluid flow to a
relatively colder surface. Hence a reduction can be seen in the temperature profile.
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Figs. 15−17 exhibit the variation of the permeability parameter k⋆ on the velocity
f ′(η), temperature θ(η), and concentration φ(η) fields, respectively. As the permeability
parameter k⋆ increases, the flow velocity f ′(η), temperature θ(η), and concentration φ(η)
decrease for SWCNT and MWCNT. Since the permeability is proportional to the fluid’s
dynamic viscosity, its booming values retards the motion of the fluid. While the perme-
ability is reversely proportional to the pressure difference, so for the increasing values of
k⋆, the pressure difference decreases, resulting in the reduction in the temperature profile.

The impact of magnetic parameter Rem on the velocity, temperature, and concentra-
tion are demonstrated in Figs. 18−20, respectively. The rising values of magnetic param-
eter Rem lead to a decrease in the velocity, temperature, and concentration profiles for
SWCNT and MWCNT nanofluid. The fluid flow becomes more convective along with
the escalating values of the magnetic parameter also it is generated by the Lorentz force.
The Lorentz force and convective flow produce resistance for the fluidic flow which causes
the de-escalation of fluid velocity, temperature, and concentration. Fig. 21 demonstrates
the impact of Brinkman number Br on the temperature profile θ(η). The enlargement
of Brinkman number Br leads to an increment in temperature θ(η). For both SWCNT
and MWCNT, the increment in temperature has happened, so the thermal boundary layer
also increases for both nanofluids. Physically, it occurs because the booming values of
Brinkman number Br result in more heat generation by viscous dissipation and slower
conduction of heat; subsequently, the temperature θ(η) increases significantly.

The impact of heterogeneous parameter Ks on the concentration profile φ(η) is demon-
strated in Fig. 22. It is monitored that the booming values of heterogeneous parameter
Ks lead to a fall off in the concentration profile φ(η) for both SWCNT and MWCNT
nanofluids. Since the heterogeneous parameter Ks is reversely proportional to the mass
diffusivity, the booming values of Ks cause the reduction in mass diffusivity. Consequently,
the decay can be seen in the concentration profile φ(η).

The variations of the concentration distribution φ(η) for the distinct values of Schmidt
number Sc are manifested in Fig. 23. The concentration profile φ(η) grows along with
the enlarging values of Schmidt number Sc for both nanofluids. It is to be noted that the
Schmidt number Sc is the ratio of momentum diffusivity to mass diffusivity. Hence, the
mass diffusivity decreases along with the increasing values of the Schmidt number Sc, and
as a result, the concentration distribution φ(η) reduces.

Fig. 24 depicts the impact of homogeneous parameter K on the concentration profile
φ(η). It is discovered that the rise of homogeneous parameter K results in a reduction in
the concentration profile φ(η) for both nanofluids. As homogeneous parameterK increases,
the mass diffusion rate decays which in turn slows down the transportation of mass species
which results in de-escalation of the mass distribution.

Table III has demonstrated the effects of various parameters like m, α⋆, A, ϕ, k⋆, Rem,
Br, Ks, Sc, and K on the wall shear stress f ′′(0), wall heat flux θ′(0), and the rate of
concentration φ′(0), with keeping Pr = 25 fixed. From Eq. (26), the skin friction coefficient
and the local Nusselt number are proportional to the surface shear stress f ′′(0) and the
surface heat flux θ′(0), respectively. It is observed that the increment in parameters m, k⋆,
and Rem leads to a reduction in surface shear stress f ′′(0) but reverse results are found if
parameters α⋆, A, and ϕ are taken into account. The heat transfer rate grows along with
the booming values of A and Br, while the opposite phenomenon arises for parameters m,
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α⋆, ϕ, k⋆, and Rem. Furthermore, the incremental changes in parameters A, ϕ, Ks, and
Sc cause the enlargement in the rate of concentration φ′(0). The reversal behavior is seen
for parameters m, α⋆, k⋆, Rem, and K. The MWCNT-blood nanofluid has higher surface
shear stress f ′′(0), surface heat flux θ′(0), and rate of concentration φ′(0) when compared
with SWCNT-blood nanofluid.

7 Conclusions

In this work, the numerical examination of the influence of homogeneous-heterogeneous
chemical reaction on the electro-hydrodynamic flow of nanofluid over a porous non-linear
stretching sheet has been carried out. The effect of Joule heating and viscous dissipation
on heat transfer has been considered. The Galerkin finite element scheme has been used
to find the numerical solution. The main concluding remarks from this work are as follows.

1. The velocity, temperature, concentration, surface shear stress, surface heat flux, and
rate of concentration profiles for MWCNT-blood nanofluid are higher than SWCNT-
blood nanofluid for all controlling parameters.

2. The velocity reduces for enhancing values of the power index parameter when η < 1.5
for both types of nanofluids. However, the opposite phenomenon occurs when η ≥ 1.5.
The temperature, surface shear stress, surface heat flux, and rate of concentration
decrease, while the concentration profile increases for both nanofluids.

3. There is a decrease in temperature, concentration, surface heat flux, and concen-
tration rate as the wall thickness parameter is enhanced whereas the velocity and
surface shear stress show opposite behavior for both nanofluids.

4. Velocity, temperature, concentration, surface shear stress, surface heat flux, and rate
of concentration increase along with the increment in ratio parameter.

5. Velocity, concentration, surface shear stress, and rate of concentration are enhanced
when the volume fraction parameter increases, but the temperature and surface heat
flux decrease.

6. Enlargement in permeability parameter and magnetic parameter are results of re-
duction in the velocity, temperature, concentration, surface shear stress, surface heat
flux, and rate of concentration profiles for SWCNT and MWCNT nanofluids.

7. The thermal boundary layer thickness and surface heat flux enhance along with the
booming values of the Brinkman number.

8. Concentration profile declines while the concentration rate rises, corresponding to the
rising values of the heterogeneous and homogeneous parameters whereas the opposite
behavior can be seen for the Schimdt number.
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Incorporating the Darcy-Forchheimer porous medium, inclined surface, adding hybrid
nanofluids with different shapes, or calculating entropy generation could be the possi-
ble direction of future research.
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Table I: Thermophysical properties of used materials
Properties Human Blood SWCNT MWCNT
ρ(Kg/m3) 1053 2600 1600
σe(S/m) 0.8 106 − 107 1.9× 10−4

Cp(J/KgK) 3594 425 796
κ(W/mK) 0.492 6600 3000
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Figure 1: Sketch of the physical problem

Table II: Comparison of −f ′′
(0) with previously data when m = 1, α⋆ = may have any

value, ϕ = 0, Rem = 0
A k⋆ Hayat et al. [2016] Present results
0.1 0.0 0.969379 0.969436
0.2 0.918106 0.918113
0.5 0.667262 0.667264
0.0 0.5 1.2247 1.224776

1.0 1.4142 1.414216
1.5 1.5811 1.581139
2.0 1.7320 1.732051
5.0 2.4494 2.449490
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Figure 2: Flow chart of Galerkin finite element scheme
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Figure 3: Impact of power index parameter m on velocity profile with α⋆ = 0.1, A = 0.1,
ϕ = 0.1, k⋆ = 0.1 and Rem = 0.1
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Figure 4: Impact of power index parameter m on temperature profile with α⋆ = 0.1, A =
0.1, ϕ = 0.1, k⋆ = 0.1, Rem = 0.1, Pr = 25 and Br = 0.1
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Figure 5: Impact of power index parameter m on concentration profile with α⋆ = 0.1, A
= 0.1, ϕ = 0.1, k⋆ = 0.1, Rem = 0.1, Ks = 1.0, Sc = 1.5 and K = 0.5
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Figure 6: Impact of wall thickness parameter α⋆ on velocity profile with m = 2.0, A = 0.1,
ϕ = 0.1, k⋆ = 0.1 and Rem = 0.1
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Figure 7: Impact of wall thickness parameter α⋆ on temperature profile with m = 2.0, A
= 0.1, ϕ = 0.1, k⋆ = 0.1, Rem = 0.1, Pr = 25 and Br = 0.1
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Figure 8: Impact of wall thickness parameter α⋆ on concentration profile with m = 2.0, A
= 0.1, ϕ = 0.1, k⋆ = 0.1, Rem = 0.1, Ks = 1.0, Sc = 1.5 and K = 0.5
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Figure 9: Impact of ratio parameter A on velocity profile with m = 2.0, α⋆ = 0.1, ϕ = 0.1,
k⋆ = 0.1 and Rem = 0.1
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Figure 10: Impact of ratio parameter A on temperature profile with m = 2.0, α⋆ = 0.1, ϕ
= 0.1, k⋆ = 0.1, Rem = 0.1, Pr = 25 and Br = 0.1
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Figure 11: Impact of ratio parameter A on concentration profile with m = 2.0, α⋆ = 0.1,
ϕ = 0.1, k⋆ = 0.1, Rem = 0.1, Ks = 1.0, Sc = 1.5 and K = 0.5
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Figure 12: Impact of volume fraction parameter ϕ on velocity profile with m = 2.0, α⋆ =
0.1, A = 0.1, k⋆ = 0.1 and Rem = 0.1
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Figure 13: Impact of volume fraction parameter ϕ on temperature profile with m = 2.0,
α⋆ = 0.1, A = 0.1, k⋆ = 0.1, Rem = 0.1, Pr = 25 and Br = 0.1
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Figure 14: Impact of volume fraction parameter ϕ on concentration profile with m = 2.0,
α⋆ = 0.1, A = 0.1, k⋆ = 0.1, Rem = 0.1, Ks = 1.0, Sc = 1.5 and K = 0.5
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Figure 15: Impact of permeability parameter k⋆ on velocity profile with m = 2.0, α⋆ =
0.1, A = 0.1, ϕ = 0.1 and Rem = 0.1
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Figure 16: Impact of permeability parameter k⋆ on temperature profile with m = 2.0, α⋆

= 0.1, A = 0.1, ϕ = 0.1, Rem = 0.1, Pr = 25 and Br = 0.1
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Figure 17: Impact of permeability parameter k⋆ on concentration profile with m = 2.0, α⋆

= 0.1, A = 0.1, ϕ = 0.1, Rem = 0.1, Ks = 1.0, Sc = 1.5 and K = 0.5
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Figure 18: Impact of magnetic parameter Rem on velocity profile with m = 2.0, α⋆ = 0.1,
A = 0.1, ϕ = 0.1 and k⋆ = 0.1
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Figure 19: Impact of magnetic parameter Rem on temperature profile with m = 2.0, α⋆ =
0.1, A = 0.1, ϕ = 0.1, k⋆ = 0.1, Pr = 25 and Br = 0.1
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Figure 20: Impact of magnetic parameter Rem on concentration profile with m = 2.0, α⋆

= 0.1, A = 0.1, ϕ = 0.1, k⋆ = 0.1, Ks = 1.0, Sc = 1.5 and K = 0.5
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Figure 21: Impact of Brinkman number Br on temperature profile with m = 2.0, α⋆ =
0.1, A = 0.1, ϕ = 0.1, k⋆ = 0.1, Rem = 0.1 and Pr = 25
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Figure 22: Impact of heterogeneous parameter Ks on concentration profile with m = 2.0,
α⋆ = 0.1, A = 0.1, ϕ = 0.1, k⋆ = 0.1, Rem = 0.1, Sc = 1.5 and K = 0.5
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Figure 23: Impact of Schmidt number Sc on concentration profile with m = 2.0, α⋆ = 0.1,
A = 0.1, ϕ = 0.1, k⋆ = 0.1, Rem = 0.1, Ks = 1.0 and K = 0.5
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Figure 24: Impact of homogeneous parameter K on concentration profile with m = 2.0,
α⋆ = 0.1, A = 0.1, ϕ = 0.1, k⋆ = 0.1, Rem = 0.1, Ks = 1.0 and Sc = 1.5
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Table III: Computed values of f
′′
(0), θ′(0) and φ′(0) corresponding to various considered

parameters for SWCNT−blood (SWCNT−b) and MWCNT−blood (MWCNT−b) with
Pr = 25
m α⋆ A ϕ k⋆ Rem Br Ks Sc K −f ′′

(0) θ′(0) φ′(0)
SWCNT-b MWCNT-b SWCNT-b MWCNT-b SWCNT-b MWCNT-b

0.1 0.1 0.1 0.10 0.1 0.1 0.1 1.0 1.5 0.5 0.885504 0.831434 2.4939 2.6089 0.44685 0.45354
1.0 1.007564 0.957639 2.0356 2.1204 0.39740 0.40156
2.0 1.053373 1.004705 1.8583 1.9318 0.36468 0.36780
3.0 1.075546 1.027434 1.7720 1.8400 0.34119 0.34375
2.0 0.4 1.014705 0.969169 1.3918 1.4357 0.33194 0.33556

0.7 0.977555 0.934975 0.9902 1.0108 0.29657 0.30074
1.0 0.941912 0.902115 0.6613 0.6658 0.25900 0.26372
0.1 0.3 0.931354 0.890423 1.8888 1.9598 0.37987 0.38168

0.5 0.742942 0.711969 1.9312 1.9997 0.39480 0.39580
0.7 0.499347 0.480296 1.9810 2.0472 0.40845 0.40889
0.1 0.01 1.108167 1.102490 3.0066 3.0276 0.36116 0.36152

0.04 1.091644 1.070055 2.4754 2.5290 0.36220 0.36360
0.07 1.073345 1.037454 2.1199 2.1870 0.36339 0.36569
0.10 0.2 1.085488 1.038288 1.8515 1.9248 0.36200 0.36506

0.3 1.116595 1.070738 1.8450 1.9180 0.35939 0.36237
0.4 1.146767 1.102143 1.8386 1.9114 0.35680 0.35974
0.1 0.4 1.128126 1.055586 1.8456 1.9232 0.35994 0.36457

0.7 1.198385 1.104210 1.8336 1.9149 0.35550 0.36148
1.0 1.264855 1.150847 1.8224 1.9070 0.35133 0.35853
0.1 1.0 1.053373 1.004705 1.9820 2.0518 0.36468 0.36780

8.0 2.9443 2.9850
15.0 3.9066 3.9183
22.0 4.8688 4.8515
0.1 0.5 0.25388 0.25532

1.5 0.42743 0.43173
2.0 0.46836 0.47350
1.0 1.0 0.31166 0.31518

2.0 0.40194 0.40468
2.5 0.43004 0.43247
1.5 1.0 0.33840 0.34258

1.5 0.30425 0.31009
2.0 0.25850 0.26700
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Abstract

The DTM-Pade approximation is used in the current work to analyze the thermal behavior

and thermal stresses of an annular fin while accounting for temperature-dependent thermal

conductivity and internal heat generation. The energy problem is converted into a

nonlinear ordinary differential equation (ODE) using non-dimensional parameters, and the

DTM-Pade approximation is then utilized to provide an approximate analytical solution.

The impacts of various settings on the temperature field are also graphically analyzed.

It has been found that increasing the heat generation parameter causes the temperature

distribution to improve. The growing thermo-geometric parameter values lead to an

improvement in fin efficiency.

Keywords: Annular fin; DTM-Pade approximant method; Heat generation.

Nomenclature:

r0 Outer radius t Thicknesses of the fin

Q Actual heat transfer T⋆ Temperature

h Heat transfer coefficient λ Thermo-geometric parameter

α Nondimensional heat generation α Heat generation parameter

κ0 Thermal conductivity at R Dimensionless outer radius

ambient temperature
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2

θ Dimensionless temperature ν Internal heat generation variation

q0 Internal heat generation at µ Nondimensional heat generation

ambient temperature variation

T∞ Ambient temperature k Thermal conductivity of the fin

ζ Dimensionless radius Tb Base temperature

Qmax Maximum possible heat transfer ri Inner radius

η Fin efficiency κ Thermal conductivity variation

σr, σϕ Radial and tangential stress χ Dimensionless coefficient of thermal

expansion

α∗ linear coefficient of thermal ν Poisson’s ratio

expansion

εr, εϕ Radial and tangential strain σr, σϕ Dimensionless radial and

tangential stress

E Young’s modulus

1 Introduction

Annular fins are typical heat transfer components that are employed in a variety of

engineering applications to improve surface heat dissipation. The circular shape of these

fins promotes effective heat transfer while using the least amount of material. In real-world

situations, materials’ thermal conductivities frequently change with temperature, and heat

generation may take place within the fin structure for a variety of reasons. Optimizing the

design and performance of annular fins with these complexities requires accurate analysis.

Finned surfaces are widely used in electrical components, computer CPU heat sinks,

heat exchangers, superheaters, electrical equipment, automobile radiators, compressor

cylinders, and refrigeration because they can improve the convection heat transference

between a solid surface and its surroundings. There are several ways to increase heat

transfer, but one of the best is to mount a fin to the primary surface to offer more surface

area. Numerous studies examine the behavior of thermal distribution through annular

fins with standard profile shapes as triangular, rectangular, concave and hyperbolic, and

convex parabolic fins. Recently, a number of researchers used numerical and analytical

methods to examine the heat transfer properties of various fins. By taking into account

the varied thermal conductivity, Darvishi et al. [1] investigated the thermal dispersion

of an annular fin. Using a graphical illustration, Gaba et al. [2] addressed the heat

transmission and effectiveness of annular fins with parabolic and exponential profiles. The

differential evolution method was utilized by Ranjan et al. [3] to examine the radiative
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phenomenon through an annular fin. By using the Durbin inverses Laplace transform

approach, Bas and Keles [4] explained the thermal stress characteristics of one-dimensional

annular extended surfaces. The property of temperature distribution across an annular

fin was studied by Lee et al. in [5], and they also looked into the thermal stress of the

fin. The heat distribution of a permeable fin submerged in a nanoliquid was examined by

Sowmya et al. [6]. Baslem et al. [7] investigated the heat transfer of a straight porous fin

positioned in a nanofluid while taking radiation and natural convection into account. The

Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), Homotopy

Analysis Method (HAM), and Adomian Decomposition Method (ADM) are some of the

analytical techniques that can be used to address nonlinear differential problems. But the

computations used in these methods are complicated. A technique that may effortlessly

and without restrictions solve nonlinear terms is essential. This benefit is provided by

the Differential Transformation Method (DTM), which may be used to expand a power

series to find the analytical solution to differential equations that are both linear and

nonlinear. By converting differential equations into algebraic equations, the numerical

method known as DTM can solve differential equations. It offers an effective and precise

approach to approximate the solutions of differential equations, particularly when closed-

form solutions are not easily accessible. It is often used in conjunction with the Pade

approximation. DTM with the Pade approximation can be used to get approximations

of solutions for the temperature distribution T(r) in the context of the annular fin with

temperature-dependent features. The Pade approximation is used to shorten the infinite

series produced by DTM once the differential equation and boundary conditions are

translated into algebraic equations. This approach expands the solution into Taylor’s

series form. DTM was initially used by Zhou [8] to examine an electrical circuit by solving

both linear and nonlinear initial value issues. By taking varying thermal conductivity

into account, Ghasemi et al. [9] were able to get at the analytical solution for the heat

distribution through a fin using the DTM’s attributes. In their study of the effects of

radiation on a permeable extended surface (Moradi et al., [10], they used DTM to arrive

at an analytical solution for the temperature field. Kundu and Lee [11] elaborated on heat

transmission via an annular permeable extended surface, and DTM was used to solve

the governing equation. For the temperature equation of the straight fin with varying

thermal conductivity, Mosayebidorcheh et al. [12] used DTM. By using the DTM-Pade

approximation, Christopher et al. [13] examined the hybrid nanoliquid stream across

a cylindrical geometry. The creation of internal heat through a fin has been studied

by several researchers. The significance of internal heat generation by an annular fin

with temperature-dependent thermal conductivity was discussed by Ranjan and Mallick

in [14]. The thermal behavior of a one-dimensional permeable rectangular fin with heat
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generation was discussed by Hoseinzadeh et al. [15]. An analytical method was used by

Ranjan et al. [16] to examine the thermal stresses and heat generation of an annular

extended surface. By accounting for thermal conductivity, Kezzar et al. [17] investigated

the features of heat generation over a longitudinal extended surface. Sowmya et al. [18]

scrutinized the aspect of internal heat generation through a permeable fin immersed in

a nanoliquid. The literature described above demonstrates that using the DTM-Pade

approximant, no attempt has been made to examine the thermal distribution and thermal

stresses of annular fins with internal heat generation and temperature-dependent thermal

conductivity. A challenging issue in heat transfer and thermal engineering is analyzing the

thermal behavior of an annular fin with temperature-dependent thermal conductivity and

heat generation. Using a numerical method called the Differential Transformation Method

(DTM) and Pade approximation, one can approximate the answers to such issues. Let’s

dissect the elements of this issue and talk about how DTM-Pade approximation might

be used. Also, we refer [27–31] for more information. Therefore, the main goal of this

inquiry is to use the DTM-Pade approximant, a sophisticated mathematical technique,

to solve the annular fin’s energy equation. Additionally, internal heat generation and

thermal analysis of fins with temperature-dependent thermal conductivity are examined.

The main advantage of this method is that it may be used directly on the issue without

any linearization, perturbation, or discretization being necessary. Additionally, it offers

more precise or exact solutions.

2 Formulation in mathematics

The following assumptions form the basis of the mathematical model:

1. This study takes into account an axisymmetric thin annular fin with uniform

thickness, uniform inner and outer radii, and homogenous isotropic material, as

shown in Figure 1.

2. The temperature of the surrounding liquid doesn’t change while the heat is rejected.

3. At the tip of the fin, very little heat is lost.

4. Heat conduction only happens in the radial direction since there are no thermal

gradients in the circumferential or axial orientations.

5. The base of the fin is maintained at a consistent temperature.

6. Convective heat transfer’s coefficient is a fixed quantity.

7. By convection, the fin loses heat to its surroundings.
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8. The fin functions in a steady condition.

Figure 1: Schematic of an annular fin.

Under these assumptions, the energy equation derived from the law of conservation of

energy for one-dimensional heat transfer is specified as [19]:

t
d

dr

[
k(T⋆)r

dT⋆

dr

]
− 2hr(T⋆ − T∞) + q∗(T⋆)tr = 0 (1)

The following values for the thermal conductivity and internal heat generation are assumed

to change linearly with temperature:

k(T⋆) = k0{1 + κ(T⋆ − T∞)},

q∗(T⋆) = q0{1 + ν(T⋆ − T∞)}. (2)

Therefore, the following boundary conditions for the energy balance equation can be

obtained by implementing zero conductive heat resistance at the fin wall.

r = ri : T⋆ = Tb,

r = r0 :
dT⋆

dr
= 0. (3)

The following non-dimensional parameters are utilized.

θ =
T⋆ − T∞

Tb − Ta
, Bi =

hri
k0

, β = κ(Tb − T∞), µ = ν(Tb − T∞), ζ =
r − ri
ri

, R =
r0
ri
,

λ2 =
2hr2i
k0t

, α =
q0r

2
i

k0(Tb − T∞)
. (4)
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The governing equation (1) and boundary condition (3) are reduced into non-dimensional

energy equation with the help of equation (2) and (4) and are given as:

θ′′ + βθθ′′ +
β

1 + ζ
θθ′ +

1

1 + ζ
θ′ + β(θ′)2 − λ2θ + α(1 + µθ) = 0, (5)

Here, ζ = 0 ; θ = 1

and, ζ = R− 1 ; θ′ = 0 (6)

3 Discussion on Differential Transformation Method

(DTM)

The attributes of DTM were covered in this section. Using the Taylor’s series expression,

this method can be used to find solutions for a system of linear and nonlinear differential

equations as well as adequate beginning and boundary conditions. Taylor’s series has the

following general form:

w(l) =
∞∑
q=0

(l − l0)
q

q!

[
dqy(l)

dxq

]
l=l0

(7)

The differential transformation W (q) of a function w(l) is expressed as follows:

W (q) =
1

q!

[
dqw(l)

dxq

]
l=l0

(8)

In equation (7), W (q) is the transformed function of the original function w(l).

Differential inverse transforms for W (q) is defined as:

w(l) =
∞∑
q=0

W (q)(l − l0)
q (9)

The fundamental properties of DTM are specified in Table. 2 (see Zhou [20], Hassan [21],

Jawad and Hamody [22])

Table 2: Properties of DTM

Original function Transformed function

W (l) = g(l)± h(l) W (q) = G(q)±H(q)

w(l) = αg(l) W (q) = CG(q), where C is the constant.
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W (l) = dh(l)
dl

W (q) = (q + 1)H(q + 1)

w(l) = dnh(l)
dl

W (q) = (q + 1)(q + 1) · · · (q + n)H(q + n)

w(l) = lm W (q) = δ(q −m) =

{
1, q = m

0, q ̸= m

}
w(l) = g(l)h(l) W (q) =

∑q
r=0G(r)H(q − r)

w(l) = f1(l)f2(l) · · · W (q) =
∑q

qs−1=0

∑qs−1=0
qs−2=0 · · ·

∑q3
q2=0

∑q2
q1=0W1(q1)

· · · fs−1(l)fs(l) W2(q2 − q1) · · ·Ws−1(qs−1 − qs−2)Ws(q − qs−1)

4 Pade Approximant Method

The Pade approximant is a powerful approach that is frequently used in numerical analysis

and scientific computing to approximate a polynomial function into rational functions of

polynomials of a particular degree (see Boyd [23] and Rashidi et al. [24]). Compared to a

straightforward polynomial fit, this method enables us to describe a given function with

higher precision and adaptability. Assume that a power series represents the function

h(zeta). Using powers of a variable, in this case zeta, power series are a fundamental

mathematics tool for expressing functions as an infinite sum of terms. When working

with functions that may be roughly represented as a sum of polynomial terms, they are

especially helpful.

h(ζ) =
∞∑
i=0

γiζ
i (10)

Equation (4) is a vital initial step in any analysis using Pade approximants. The Pade

approximant, a mathematical idea, is crucial to the discipline of numerical analysis. It

is a rational fraction with a Maclaurin expansion that is intended to as closely match

equation (3) as possible. In other words, Pade approximants use rational approximations,

which are more computationally effective than attempting to directly compute or alter

the actual equation, to provide an accurate representation of complicated functions.

α0 + α1ζ + α2ζ
2 + · · ·+ αSζ

S

β0 + β1ζ + β2ζ2 + · · ·+ βT ζT
(11)

It is believed that the numerator and denominator coefficients of equation (1) are of order

S + 1 and T + 1, respectively. As a result, there is an independent T denominator,

and independent S + 1 numerator coefficients result in an overall S + T + 1 unknown

coefficient. This order suggests using the orders 1, ζ, ζ2, · · · , ζS+T to usually fit the power

series equation (3).
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The representation of power series is given as:

∞∑
i=0

γiζ
i =

α0 + α1ζ + α2ζ
2 + · · ·+ αSζ

S

β0 + β1ζ + β2ζ2 + · · ·+ βT ζT
+ o(ζS+T+1) (12)

(β0 + β1ζ + β2ζ
2 + · · ·+ βSζ

T )(γ0 + γ1ζ + γ2ζ
2 + · · · ) = α0 + α1ζ + α2ζ

2 + · · ·

+αSζ
S + o(ζS+T+1) (13)

Comparing the coefficients of ζS+1, ζS+2, · · · , ζS+T

βTγS−T+1 + βT−1γS−T+2 + · · ·+ β0γS+1 = 0,

βTγS−T+2 + βT−1γS−T+3 + · · ·+ β0γS+2 = 0,

· · · · · ·

· · · · · ·

· · · · · ·

βTγT + βT−1γT+1 + · · ·+ β0γS+T = 0,

(14)

To obtain the desired consistency in our mathematical framework, we define the parameter

γi to be equal to zero. This choice plays a pivotal role in simplifying the system. When

we set β0 to be equal to 1, as stipulated in equation (5), this transforms the equation into

a set of T linear equations. These linear equations represent the relationship between the

various coefficients in our system, specifically, the T unknown denominator coefficients.
γS−T+1 γS−T+2 · · · γS+1

γS−T+2 γS−T+3 · · · γS+2

· · · · · · · · · · · ·
γS γS+1 · · · γS+T




βT

βT+1

· · ·
βS

 =


γS+1

γS+2

· · ·
γS+T

 (15)

βi is obtained from these equations. The numerator coefficients α0, α1, · · · , αS from

equation (10) are found by equating the coefficients of 1, ζ, ζ2, · · · , ζS+T such as,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

175 Sarwe et al 168-197



9

α0 = γ0,

α1 = γ1 + β1γ0,

α2 = γ2 + β1γ1 + β2γ0,

· · · · · · · · ·

αS = γS +

min[S/T ]∑
i=1

βiγS−i. (16)

The equations (15) and (16), also referred to as Pade equations, thereby yield the Pade

numerator and denominator. These equations are crucial to numerical analysis, especially

when it comes to approximating rational functions. They are effective tools for estimating

complex functions using straightforward rational functions. In engineering and scientific

computations, a particular kind of rational function approximation known as the [S/T ]

Pade approximant is crucial. The trade-off between the degree of the numerator (S) and

the degree of the denominator (T ) is balanced in its development. A reference to another

crucial equation that establishes the order of the Pade approximant is made in the phrase

by the equation (10) . An approximation’s accuracy and complexity are determined by

its order. To ensure that the Pade approximant finds a compromise between accuracy and

computational economy, the equation (10) offers a way for calculating its ideal order.

5 Applications of DTM-Pade method

The DTM-Pade method have several applications in a variety of scientific and technical

fields. This potent mix of mathematical methods is essential for resolving difficult issues

and simulating a wide range of phenomena. Applying DTM to the non-linear differential

equation (2), we obtain the following expression

(q + 1)(q + 2)Θ[q + 2] + β

q∑
r=0

Θ[q − r](r + 1)(r + 2)Θ[r + 2] +

β

q∑
r+0

r∑
m=0

1

1 + δ[m− 1]
Θ[r −m](q − r + 1)Θ[q − r + 1] +

q∑
r=0

1

1 + δ[m− 1]
(q − r + 1)Θ[q − r + 1] +

β

q∑
r=0

(q − r + 1)Θ[q − r + 1](r + 1)Θ[r + 1]− λ2Θ[k] + αδ[k] + αµΘ[k] = 0. (17)
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For the solution of difficult differential equations, the Differential Transformation Method

(DTM) is applied to the boundary conditions of equations (6). With the aid of this ground-

breaking mathematical method, we may better understand how the system behaves and

create a precise expression that captures the complex interrelationships underlying the

mathematical or physical events that are the subject of the inquiry. Applying DTM to

the boundary conditions in equations (6) we obtain the following expression:

Θ[0] = 1, Θ[1] = a (18)

Substituting q = 0, 1, 2, · · · so on and equation (18) in equation (17), we obtain the

successive approximation as:

Θ[2] = −1

2

a2β + µα− λ2 + aβ + α + a

β + 1
(19)

Θ[3] =
1

12(β + 1)2


6a3β2 + 4µαaβ − 4λ2aβ + 6a2β2 − 2µαa+ 2µαβ

+6αaβ + 2λ2a− 2λ2β + 6a2β + aβ2 + 2µα + 2αβ

−2λ2 + 2aβ + 2α + a

 (20)

Θ[4] = − 1

48(β + 1)3



30a4β3 + 26µαa2β2 − 26λ2a2β2 + 36a3β3 + 4µ2α2β

−8µαλ2β − 10µαa2 + 16µαaβ2 + 36αa2β2 + 4λ4β

+10λ2a2β − 16λ2aβ2 + 36a3β2 + 10a2β3 − 2µ2α2

+10µα2β + 4µαλ2 + 12µαaβ − 10αλ2β + 20αaβ2 − 2λ2

−12λ2aβ + 20a2β2 + 3aβ3 − 2µα2 − 4µαa+ 6α2β

+2αλ2 + 20αaβ + 4λ2a+ 10a2β + 9aβ2 + 9aβ + 3a


(21)

and so on.

Where Θ[q] is the differential transform of θ(ζ) and is the constant to be calculated by

using boundary conditions.

Substituting the equations (18)-(21) in equation (9) comprising DTM, we obtain the
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following equations:

θ(ζ) = 1 + aζ − 1

2

a2β + µα− λ2
aβ + α + a

β + 1
ζ2 +

1

12(β + 1)2



6a3β2 + 4µαaβ − 4λ2aβ

+6a2β2 − 2µαa+ 2µαβ

+6αaβ + 2λ2a− 2λ2β

+6a2β + aβ2 + aβ2 + 2µα

+2αβ − 2λ+ 2aβ

+2α + a


ζ3 − 1

48(β + 1)2



30a4β3 + 26µαa2β2 − 26λ2a2β2 + 36a3β3 + 4µ2α2β

−8µαλ2β − 10µαa2 + 16µαaβ2 + 16µαaβ2 + 36αa2β2

+4λ4β + 10λ2a2β − 16λ2aβ2 + 36a3β2 + 10a2β3 − 2µ2α2

+10µα2β + 4µαλ2 + 12µαaβ − 10αλ2β + 20αaβ2 − 2λ4

−12λ2aβ + 20a2β2 + 3aβ3 − 2µα2 − 4µαa+ 6α2β + 2αλ2

+20αaβ + 4λ2a+ 10a2β + 9aβ2 + 9aβ + 3a


ζ4 + · · · (22)

To evaluate the value, we apply the Pade approximant to equation (22) along with

boundary condition (6). We get the value of a and by substituting the constant value

a = −.9097156826, α = 0.4, µ = 0.4, λ = 1, β = 0.3 in the equation (22) equation we

get,

θ(ζ) = 1− 0.9097256826ζ + 0.5286012084ζ2 − 0.1192183969ζ3 + 0.05254461407ζ4 + · · ·

Table 3: Comparison of θ′(0) for the numerical method

and DTM-Pade approximation

Parameters Numerical solution DTM-Pade solution

β = 0.3 -0.39096 -0.40052

α = 0.5 -0.26968 -0.25435

µ = 0.8 -0.26007 -0.26120

λ = 1.5 -1.13261 -1.12958

Table 4: Comparison of θ′(0) when µ = 0, α = 0, λ =

1, β = 0.3 for the numerical method and DTM-Pade

approximation
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Non dimensional Arslanturk Mallick et. al Present DTM

radius ζ FDM [25] HPM [26]

0 1.0 1.0 1.0

.1 .9477 .9455 .9489

.2 .9036 .9013 .9025

.3 .8668 .8659 .8608

.4 .8365 .8380 .8239

6 Fin Efficiency

The fin efficiency, a critical parameter for assessing a fin’s thermal performance. Because

it enables us to assess and improve the performance of heat exchangers, radiators, and

other systems that depend on fins for heat transmission, the fin efficiency concept is

useful in engineering and thermal design. Engineers can choose materials, fin geometry,

and other design characteristics to increase heat transfer while minimizing energy use and

material usage by having a thorough understanding of a fin’s efficiency. In essence, it aids

in the effective design of systems where heat absorption or dissipation is crucial for overall

performance. Considerations for an annular fin’s non-dimensional fin efficiency include its

thickness, thermal conductivity, and outer and inner radii. We can use this equation to

calculate the annular fin’s efficiency at transferring heat from its base to the environment

around it while taking into account its geometric and material characteristics. The non-

dimensional form of fin efficiency is provided as follows for an annular fin:

η =
Q

Qmax

=
4πh

∫ r0
ri
(T⋆ − T∞)rdr

2πh(r20 − r2i )(Tb − T∞)
=

2
∫ R−1

0
(1 + ζ)θdζ

(R2 − 1)
(23)

7 Thermal stress formulation

A temperature gradient is applied to the annulus in the material under inquiry along its

radial direction. The primary cause of stresses is an incompatible eigen-strain brought on

by phase transformation, precipitation hardening, and temperature change brought on by

the presence of a conduction-convection field. Furthermore, it is assumed that the only

factor responsible for the evolution of the eigen-strain is the variation in temperature in the

radial direction. Since the thickness of fin is significantly thinner than the radius of the fin,

the difference in stress and displacement over the thickness is ignored. Additionally, due

to the symmetric behavior of the issue, the radial and tangential stresses are independent

of ϕ and cannot be influenced by it. As a result, the issue at hand is axisymmetrically
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planar tension. The stress equilibrium equation in a cylindrical coordinate system derived

from the classical theory of elasticity is as follows since the body force and inertia force

are disregarded:

dσr

dr
+

σr − σϕ

r
= 0 (24)

Where σr and σϕ are radial and tangential components of stress field.

The fin is subjected to thermal stresses, which causes the overall strain to evolve by two

strains. While the second is a result of free thermal expansion, the first is caused by

induced stresses. Using the traditional theory of elasticity, the stress-strain-temperature

relationship is defined by the following expression:

ϵr =
1

E
[σr − vσϕ] + α∗T⋆

ϵϕ =
1

E
[σϕ − vσr] + α∗T⋆ (25)

where ϵr and ϵϕ represents the radial and tangential strain components, α∗ is the coefficient

of thermal expansion, v is the Poisson’s ratio, and E is the modulus of elasticity of fin

material. These parameters mentioned in the sentence play vital roles in characterizing

the behavior of a material or a structural element.

Equation (25) can be written in the form[
σr

σϕ

]
=

E

1− v2

[
1 v

v 1

][
ϵr

ϵϕ

]
− Eα∗T⋆

1− v

[
1

1

]
(26)

Kinematics relations for the polar strain components, in a plane strain state, are

ϵr =
∂ur

∂r
and ϵϕ =

ur

r
(27)

Substituting Eqs. (27) and (26) into Eq. (24) and integrating twice, the following closed-

form solution for the radial displacement is achieved as

ur =
(1 + v)α∗

r

∫ r

a

(T⋆ − T∞)ηdη + A1r +
A2

r
(28)

The traction-free boundary condition at outer and inner surfaces of the fin can be taken

as

r = a, b : σr = 0 (29)
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Using Eqs. (28), (27), and (26), the constants of integration and can be appraised by

applying the boundary conditions (Eq. 29)

A1 =
(1− v)a∗

b2 − a2

∫ b

a

(T⋆ − T∞)ηdη + αT∞ and A2 =
(1 + v)a∗a2

b2 − a2

∫ b

a

(T⋆ − T∞)ηdη (30)

Using the values of A1 and A2 from Eq. (30) in Eq. (28). We get,

σr = −α∗E

r2

∫ r

a

(T⋆ − T∞)ηdη +
α∗E

b2 − a2

(
1− a2

r2

)∫ b

a

(T⋆ − T∞)ηdη and (31)

σϕ = 1α∗E(T⋆ − T∞)

∫ r

a

(T⋆ − T∞)ηdη +
α∗E

b2 − a2

(
1 +

a2

r2

)∫ b

a

(T⋆ − T∞)ηdη. (32)

Let us utilize the non-dimensional parameters:

σr =
σr

E
, σϕ =

σϕ

E
, ζ1 =

r

a
, R =

b

a
, θ =

T⋆ − T∞

Tb − T∞
, and χ = α(Tb − T∞) (33)

Using Eq. (33) in Eqs. (31) and (32) results as follows:

σr = − α∗

ζ21a
2
(Tb − T∞)

∫ ζ1

1

θ · aζ1 · adζ1

+
α∗

b2 − a2
(Tb − T∞)

(
1− 1

ζ21

)∫ R

1

θ · aζ1 · adζ1 (34)

σϕ = −α∗(Tb − T∞) +
α∗

ζ21a
2
(Tb − T∞)

∫ ζ1

1

θ · aζ1 · adζ1 +

α∗

b2 − a2
(Tb − T∞)

(
1− 1

ζ21

)∫ R

1

θ · aζ1 · adζ1 (35)

Introduction of χ and R reduces Eqs. 34 and 35 to

σr =
χ

ζ21

∫ ζ1

1

θζ1dζ1 +
χ(ζ21 − 1)

(R2 − 1)ζ21

∫ R

1

θζ1dζ1 (36)

σϕ = −χθ +
χ

ζ21

∫ ζ1

1

θζ1dζ1 +
χ(ζ21 + 1)

(R2 − 1)ζ21

∫ R

1

θζ1dζ1 (37)

The relation between ζ and ζ1

ζ = ζ + 1 (38)
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Thus, the stress equations in terms of non-dimensional radius, ζ becomes

σr = − χ

(ζ + 1)2

∫ ζ

0

θ(ζ+1)dζ +
χ(ζ2 + 2ζ)

(R2 − 1)(ζ + 1)2

∫ R−1

0

θ(ζ + 1)dζ (39)

σϕ = −χθ +
χ

(ζ + 1)2

∫ ζ

0

θ(ζ+1)dζ +
χ(ζ2 + 2ζ + 2)

(R2 − 1)(ζ + 1)2

∫ R−1

0

θ(ζ + 1)dζ (40)

8 Results and discussions

The impact of various non-dimensional parameters such as β, µ, α, and λ on dimensionless

temperature field θ are elaborated graphically here. Additionally, the graphs are set up

to talk about the effectiveness of an annular fin. Additionally, for the solutions found

using both the DTM-Pade approximation method and the numerical method, graphs

depicting variations in heat distribution are generated. The results of the numerical

method will match the graphics produced by the DTM-Pade approximation method. The

values of θ′(0) for various non-dimensional parameters are tabulated in Table 2 and the

values obtained by DTM-Pade approximation method are closer to the values of numerical

method. Table 3 epitomizes the numerical values of thermal field of an annular fin. The

values obtained by DTM-Pade approximation method are tabulated and compared with

existing work.

Figure 2 and Figure 3 show the effect of β on θ for both DTM-Pade approximation

method and the numerical method. In Figure 2, the behavior of thermal distribution

for different values of β(= −0.4,−0.2, 0, 0.2, 0.4) is portrayed by plotting the graphs

for both numerical and DTM-Pade approximation. From this figure, one can conclude

that increase in the β value enhances the θ . The nature of θ for diverse values of

β(= 0.1, 0.2, 0.3, 0.4, 0.5) is explained via Figure 3 by using DTM-Pade approximation.

It is found that θ upsurges for the rise in values. The variance in the thermal profile

θ for various values of µ is exposed in Figure 4 and Figure 5. Figure 4 reveals the

consequence of µ(= 0.3, 0.4, 0.5, 0.6) on θ for both numerical method and DTM-Pade

approximation. This figure shows that as the µ values upsurges θ enhance rapidly. The

aspect of θ for different values of µ(= 0.4, 0.5, 0.6, 0.7, 0.8) is explained via Figure 5 by

using the DTM-Pade approximation. It indicates that increment of µ values improves the

thermal distribution rate. Figure 6 and Figure 7 signify the influence of on temperature

field θ by using both numerical and DTM-Pade approximation. The major impact of

α(= 0.3, 0.4, 0.5, 0.6) on θ is elucidated in Figure 6. It denotes that, rise in the α values will

enhance the temperature distribution. Furthermore, the impact of α(= 0.3, 0.4, 0.5, 0.6)

on θ by implementing DTM-Pade approximation is shown in Figure 7. This figure reveals

that, θ improves for enhanced α values.
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The Three-dimensional (3D) and two-dimensional (2D) graphs are plotted (Figures 8 to

Figure 15) for illustrating the variation of thermal profile for various increased values of

non-dimensional parameters. Figure 8 and Figure 9 show the nature of θ for improved

values of µ and β . These figures indicate that, θ enhances remarkably for enhanced values

of µ and β. The major consequence of µ and α on θ is illustrated by utilizing 3D and 2D

plots as shown in Figure 10 and Figure 11. These figures ensure that the improvement

of µ and α values leads to the enhancement of θ . Figure 12 and Figure 13 demonstrate

the behavior of µ for rising in α and values. These figures signify that, θ upsurges with

the improvement of α and β values. The physical parameters influencing the efficiency

of fin are discussed graphically as displayed in Figure 14 and Figure 15. The efficiency

of fin is more for higher values of λ and β . Figures 16,17 and Figure 18,19 portray the

aspects of thermal stresses caused due to heat transfer through the annular fin. Figure

16 and Figure 17 signifies the effect of non-dimensional parameters χ and β on radial

stress distribution. Here, the radial stress magnitude upsurges with the decline of β. This

happens due to the fact that, decrease in β values increases the thermal resistance. As a

result, the fin material’s local free expansion is hindered. Furthermore, the radial stress

fields are unaffected by the heat generation factors α and

mu. Figures 10(a) and 10(b) show the impact of the non-dimensional parameters α

and µ on the distribution of tangential stress. Tangential stress is significantly impacted

by all non-dimensional parameters, including the heat generation parameters α and µ.

For increased values of α and µ, the effect of heat generation on the tangential stresses

remarkably increases.

9 Final remarks

In conclusion, it is a challenging task to analyze the thermal behavior of an annular fin

with temperature-dependent thermal conductivity and heat generation. To achieve precise

solutions, it is necessary to combine mathematical modeling, numerical techniques like

DTM, and approximations like the Pade approximation. In many technical applications

where effective heat transport and temperature control are critical, this analysis is crucial.

The challenge of conducting a complex yet crucial thermal analysis of annular fins with

temperature-dependent thermal conductivity and heat generation is one that engineers

and designers must do. These fins can be optimized for better performance and efficiency

with the use of accurate temperature distribution predictions within them. Engineers

and scientists are able to effectively solve the governing equations and get insightful

knowledge regarding the behavior of annular fins under real-world circumstances by using

mathematical methods like the Differential Transformation Method (DTM) and Pade
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approximation. Making informed judgments on the design and application of such heat

transfer devices across a range of applications is made easier with the help of this analysis,

which improves energy efficiency and system performance.

Utilizing the DTM-Pade approximant method, the current study investigates the heat

transference analysis as well as the thermal stresses aspect of an annular fin with

temperature-dependent thermal conductivity. Additionally, the current approach yields

findings for the thermal field. According to the results of this study, the DTM-Pade

approximant-based method offers fairly precise results and is easier to manage the

nonlinear problem. From the current investigation, it is possible to draw the following

conclusions:

� The thermal distribution is enhanced by the increasing values of β.

� The thermal distribution increases as µ values rise. Additionally, α is increased by

the thermal distribution function.

� The effectiveness of the fin is increased by the rising values of non-dimensional

parameters λ.

� The magnitude of the radial stress increases as β declines.

� For increased values of α and µ, the effect of heat generation on the tangential

stresses remarkably increases.
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Figure 2: Influence of β on θ.

Figure 3: Influence of β on θ by using DTM-Pade Approximation.
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Figure 4: Influence of µ on θ.

Figure 5: Influence of µ on θ by using DTM-Pade Approximation.
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Figure 6: Influence of α on θ.

Figure 7: Influence of α on θ by using DTM-Pade Approximation.
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Figure 8: Deviance of θ for diverse values of µ against β.

Figure 9: Deviance of θ for diverse values of µ against β.
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Figure 10: Deviance of θ for diverse values of µ against α.

Figure 11: Deviance of θ for diverse values of µ against α.
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Figure 12: Deviance of θ for diverse values of α against β.

Figure 13: Deviance of θ for diverse values of α against β.
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Figure 14: Efficiency of fin ν for diverse values of λ against β.

Figure 15: Efficiency of fin ν for diverse values of λ against β.
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Figure 16: Impact of non-dimensional parameters χ and β on radial stress distribution.

Figure 17: Impact of non-dimensional parameters χ and β on radial stress distribution.
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Figure 18: Impact of non-dimensional parameters α and µ on tangential stress
distribution.

Figure 19: Impact of non-dimensional parameters α and µ on tangential stress
distribution.
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Abstract

In this paper, mathematical model of heat transfer in a porous fin with internal heat generation, and thermal

conductivity is influenced by both spatial factors and temperature are examined. These two concepts are inte-

grated into the model, which highlighting the originality of the current study. The equations and conditions that

govern the system are expressed in a dimensionless manner. We examine three scenarios for thermal conductivity:

constant, linear, and exponential dependence on temperature. We have utilized three different techniques to solve

the problem, including the Legendre Wavelet Collocation, Finite Difference, and Least Square. Due to the non-

linearity of the presented problem, it is not possible to find an exact analytical solution. In this specific scenario,

we calculate exact solution, which is then compared to these three methods and found to have a good agreement.

The findings and error assessment are displayed in figures and tables. The Legendre wavelet collocation approach

yields high accuracy. The novelty of the research is the implantation of space and temperature dependent thermal

conductivity and solution of a complex nonlinear problem using a hybrid numerical technique, specifically the

collocation method with Legendre Wavelet basis functions.

Keywords: Finite difference, Least square, Porous fin, Legendre Wavelet Collocation Method, Conductivity.

1. Introduction

Mechanical processes produce heat. The important question here is how is how to efficiently disperse this heat into

the surrounding medium. In recent times, fins have gained popularity as efficient tools for dissipating heat into the

surrounding environment due to their uncomplicated structure and ability to facilitate various forms of coupled heat

transmission. Fins are appendages affixed to a primary item to augment the transfer of heat between the primary

object and its environment. Firstly, Harper and Brown [1] presented mathematical analysis for extended surfaces.

This surface was referred as a cooling fin, which later evolved into a fin. Further, Jakob [2] noted that the roots of the

published mathematical analysis of fin can be traced back to early 1789. At that time, experiments were conducted

to demonstrate the thermal conductivity of various metals. The fabrication of rods made from different metals

1
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was coated with wax, and the resulting melting patterns were observed when the bases of the rods were heated.

The mathematical analysis of temperature variations in rods was published by Fourier [3]. Fins are produced using

metallic materials that possess a high level of thermal conductivity. Aluminum, copper, and stainless steel are the

most often utilized materials. Kundu and Das [4] stated that maximizing the fin efficiency is largely dependent on its

geometry. It is widely known that when the length of a fin rises, the heat transmission rate from the fin reduces, and

the entire surface of the fin may not be used to its full potential. Because of this, designers are constantly working to

discover the optimal fin that will either reduce the fin material’s contribution to heat transfer or optimize the heat

transmission rate over any specific fin region. An analysis of the fin shape and all of its dimensions can determine

the amount of material required to make a fin as small as possible for the desired heat transfer. Alternatively, fin

profile dimensions that fulfill the optimization conditions presented in reference [5]. Multiple fin forms are available

for dissipating heat into the surroundings, such as rectangular, annular, elliptic, parabolic, and pin fins, etc. [6]. The

applications of expanded surfaces are rising in various industries, including air conditioning, refrigeration, internal

combustion engines, etc. [7]. Yunus [8] published a book that specifically examines heat transmission, providing

a clear explanation of fundamental ideas. With the help of mathematical formulations, a novel fin design can be

created, improving the overall quality of the fin, optimizing material costs, and maintaining fin efficiency.

Several researchers have conducted extensive research on various aspects of fins or heat exchangers. Bergman

et al. [9] presented key concepts pertaining to the transfer of heat and mass, establishing a correlation between the

principles of thermodynamics and heat transfer. Khatami and Rahbar [10] investigated the effectiveness of porous

fins by integrating the concepts of the second law of thermodynamics into the governing differential equation. Hatami

and colleagues [11] employed the differential transformation, the least square, and the moment techniques to analyze

temperature variations in a porous fins with attributes that rely on temperature. Cuce and Cuce [12] utilized

the homotopy perturbation method to evaluate the influence of heat transfer, efficiency, and efficacy on a porous

fin. In addition, Venkitesh and Mallick [13] expanded the homotopy perturbation approach to analyze annular

porous fins with two different geometries. Ma et al. [14] utilized the spectral element method to examine the heat

transmission in rotating porous fins with various profiles. Kundu et al. [15] utilized the adomian decomposition

approach to evaluate the performance and optimal design factors for porous fins. In a similar vein, Buonomo et

al. [16] employed the adomian decomposition method to evaluate the influence of convection and radiation on a

porous fin upon temperature. Although, Gireesha and Sowmya [17] utilized the differential transform approach to

analyze the interaction between natural radiation and convection on an inclined extended porous fin. Hatami and

Ganji [18] employed the RK4 method to investigate heat transfer and heat flux in circular convective and radiative

porous fins. Ghasemi et al. [19]utilized the differential transformation method to investigate the heat transmission in

solid and porous longitudinal fins, while considering the influence of temperature-dependent characteristics. Hatami

and Ganji [20] utilized the RK4 technique and the Least Square method to analyze the variations in temperature and

cooling effectiveness of totally wet porous fins. Bhanja et al. [21] utilized the adomian decomposition technique to

examine the fluctuations in temperature, efficiency, and optimal design parameters for rotating porous fins. Hamdan

and Al-Nimr [22] employed an implicit finite difference method to investigate forced convection between two parallel,

isothermal plates with porous fins. Khani and Aziz [23] utilized Bessel function in study state for finding temperature

variation and efficiency in longitudinal fin with space dependent thermal conductivity. Jangid et al. [24] applied RK4

2
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to determine heat and mass transfer through fluid-flows extended sheets with variable thickness. Kumar et al. [25]

examine the impact of thermal radiation and velocity slip on the melting of magnetic hydrodynamic micro-polar

fluid flow over an exponentially stretching sheet fixed in a porous medium.

Recently, wavelet-weighted residual techniques have been successfully implemented to obtain solutions to the

complicated problems. Singh et al. [26] employed the wavelet collocation technique to examine heat dissipation in

a constantly rotating fin with properties that are temperature and wavelength dependent. Singh et al. [27] applied

wavelet collocation and Galerkin techniques to examine heat transmission in a power-law-type fin. Oguntala et

al. [28] examine the ideal layout, thermal efficiency, and stability of a rectangular fin via utilizing the haar wavelet

collocation technique. Upadhyay et al. [29] employing the finite difference Legendre wavelet collocation technique

along with the Galerkin approach to study heat and moisture transmission in the industrial drying of food goods.

Recently, Kaur and Singh [30] utilized Legendre wavelet collocation and Least square techniques to study convective

and radiative heat transfer in moving fin. The results findings concluded that Legendre wavelet collocation technique

gives high accuracy in comparison to least square.

The objective of this study is to validate a mathematical model of heat transfer in a porous fin with internal heat

generation, and thermal conductivity is influenced by both spatial factors and temperature. In order to achieve our

research target, we utilize three separate methodologies: Legendre Wavelet Collocation, Finite Difference, and Least

Square. In this specific scenario, we calculated a precise solution, compared it to the results of all these approaches,

and saw a strong agreement. The findings and error assessment are displayed in figures and tables.

In existing studies, many numerical methods have been applied by researchers for finding temperature variation

in porous or solid fins with temperature or space-dependent thermal conductivity, but this is the first time influences

of thermal conductivity in both temperate and space are studied with the implementation of the Legendre wavelet

collocation method. This creates interest for science or technology readers and can be applied in industries where

thermal conductivity depends on both temperature and space. The novelty of the research is the implantation of

space and temperature-dependent thermal conductivity and the solution of a complex nonlinear problem using a

hybrid numerical technique, specifically the collocation method with Legendre wavelet basis functions. The present

method has been successfully applied to linear and nonlinear problems.

2. Mathematical Formulation

Figure 1 depicts a graphical illustration of a rectangular porous fin. It has specific measurements, such as a length

L, and a thickness t, is located in an environment, where heat is transferred through convection on both surfaces

at a temperature T∞. Oguntala and Abd-Alhameed [31] make the assumption that the porous media is uniform,

isotropic, and completely surrounded by a single-phase fluid. The solid and fluid are assumed to have constant

physical properties, with the exception of the liquid’s fluctuating density, which may affect the buoyancy term. The

fluid and porous media within the domain are in a state of thermodynamic equilibrium, whereas any surface radiative

transfers and non-Darcian influences are deemed negligible. The temperature change within the fin is restricted to

a one-dimensional distribution, meaning that it varies along its length while remaining constant over time. It is

presumed that the tip of the fin maintains a constant temperature throughout.
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Figure 1: Rectangular porous fin geometry.

The mathematical model governing heat transmission in a one-dimensional fin is determined using Darcy’s model

and the assumption made before. This model is governed by [31], which is as follows:

d

dx
[keff (T )

dT

dx
]− h(T − T∞)

t
− ρcpgβ

′
K(T − T∞)2

tvf
+ qa(T ) = 0, (1)

and the specified boundary conditions (BC) are as follows:

x = L, T = Tb, (2)

x = 0,
dT

dx
= 0, (3)

here, our main emphasis is on the measurement of thermal conductivity and the internal heat generation. These

factors are influenced by temperature and location-specific thermal conductivity [32], which can be described as:

keff (T ) = kaf

(
T − T0
Tb − T∞

)
, (4)

qa(T ) = qa[1 + ψ(T − T∞)], (5)

Keff (T ) = ka(1 + ax), (6)

putting Eqs. (4-5) in Eq. (1), we get Eq. (7) and Eqs. (5-6) into Eq. (1), we get Eq. (8) as described below:

d

dt

[
f

(
T − T0
Tb − T∞

)
dt

dx

]
− h(T − T∞)

kat
− ρcpgβ

′
K(T − T∞)2

katvf
+ qa[1 + ψ(T − T∞)] = 0, (7)

d

dt

[
f(x)

dt

dx

]
− h(T − T∞)

kat
− ρcpgβ

′
K(T − T∞)2

katvf
+ qa[1 + ψ(T − T∞)] = 0, (8)

instigating dimensionless variables and parameters:

X =
x

L
, θ =

T − T∞
Tb − T∞

, Ra =

(
β
′
gTat

3

vf 2

)(
ρcpvf
keff,a

)
, Q =

qvf t

ρcpgβ
′K(Tb − T∞)2

,

M2 =
hL2

keff,at
Da =

k

t2
, Sh =

RaDa
(
L
t

)2
keff,a

, β = λ(Tb − T∞), γ = ψ(Tb − T∞), (9)
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the Eqs. (4), (5) and (6) can be converted into a dimensionless form as follows:

keff (θ) = kaf(θ),

qa(θ) = qa[1 + γ(θ)],

Keff (θ) = ka(1 +BX),

using Eq. (9), the dimensionless form of the model Eqs. (7) and (8) subjected to the boundary conditions Eqs.

(2)-(3) come out to be:

f(θ)
d2θ

dX2
+ f

′
(θ)

(
dθ

dX

)2

−M2θ − Shθ2 + ShQ(1 + γθ) = 0, (10)

f(X)
d2θ

dX2
+ f

′
(X)

(
dθ

dX

)2

−M2θ − Shθ2 + ShQ(1 + γθ) = 0, (11)

the conditions at the boundaries are:

X = 1, θ = 1, (12)

X = 0,
dθ

dX
= 0. (13)

3. Solution of the problem

The concepts of matrix of integration, wavelet collocation method, Least Square method (LSM) and Finite Difference

method (FDM) are given below:

3.1. Operational Matrix of integration

The matrix that represents the integration operational properties of the Legendre wavelet is given by:

ψn,m =


√

(m+ 1/2)2k/2Pm
(
2kX − n̂

)
, n̂−1

2k
≤ X ≤ n̂+1

2k

0 , otherwise

, (14)

where n = 1, 2, ..., 2k−1,m = 0, 1, ..., S − 1 and k is the positive integer. Here, Pm(X) signifies the Legendre polyno-

mial of degree m, and ψ(X), as defined in Eq. (14), is derived as follows:

∫ X

0

ψ(t)dt = Pψ(X), ∈ [0, 1),

where P is the operational matrix of order 2k−1M × 2k−1M and k = 1, which is investigated by Razzaghi and

Yousefi [33].
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3.2. Legendre Wavelet Collocation Method

Let

θ
′′

= CTψ(X), (15)

integrating Eq. (15) twice from 0 to X, and using BC, we obtain

θ
′
(X) = CTPψ(X), (16)

and

θ(X) = 1− CTP 2ψ(1) + CTP 2ψ(X), (17)

substituting Eqs. (15),(16) and (17) in Eqs. (10) and (11), we get

f(θ)[CTψX)] + f
′
(θ)[CTPψ(X)]2 −M2[1− CTP 2ψ(1) + CTP 2ψ(X)]− Sh[1−

CTP 2ψ(1) + CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0, (18)

f(X)[CTψX)] + f
′
(X)[CTPψ(X)]2 −M2[1− CTP 2ψ(1) + CTP 2ψ(X)]− Sh[1−

CTP 2ψ(1) + CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0, (19)

as θ(X) is an approximation of the results of the Eqs. (19). We choose n collocation points denoted as (Xi, i =

1, 2, 3, ..., n), such that the residuals R(X, c1, c2, ..., cn) become zero. It is essential to note that the count of these

collocation points and coefficients should be identical.

3.2.1. Temperature dependent thermal conductivity

For temperature dependent thermal conductivity we apply three cases in Eq. (18), we get

Case 1: Where thermal conductivity remains constant, the substitution of f(θ) = 1 into Eq. (19) produces the

following outcome:

[CTψ(X)]−M2[1− CTP 2ψ(1) + CTP 2ψ(X)]− Sh[1− CTP 2ψ(1) +

CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0. (20)

Case 2: Where thermal conductivity remains linear, the substitution of f(θ) = 1 + βθ into Eq. (19), produces the

following outcome:

[1 + β(1− CTP 2ψ(1) + CTP 2ψ(X))][CTψX)] + β[CTPψ(X)]2 −M2[1− CTP 2ψ(1) + CTP 2ψ(X)]

−Sh[1− CTP 2ψ(1) + CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0. (21)
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Case 3: Where thermal conductivity remains exponential, we put f(θ) = eβθ in Eq. (19), we get

eβθ[CTψX)] + βeβθ[CTPψ(X)]2 −M2[1− CTP 2ψ(1) + CTP 2ψ(X)]− Sh[1− CTP 2

ψ(1) + CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0. (22)

3.2.2. Location dependent thermal conductivity

For location dependent thermal conductivity, we take f(X) = 1 +BX as a linear function in Eq. (19), we get

(1 +BX)[CTψ(X)] +B[CTPψ(X)]2 −M2[1− CTP 2ψ(1) + CTP 2ψ(X)]− Sh[1− CTP 2ψ(1) +

CTP 2ψ(X)]2 + ShQ[1 + γ(1− CTP 2ψ(1) + CTP 2ψ(X))] = 0. (23)

This system consists of nine nonlinear algebraic equations, which are evaluated utilizing nine Legendre Wavelet

basis functions and collocation points spanning the interval (0, 1). Solving the resulting system of Eqs. (20), (21),

(22) and (23) separately, by using Newton-Raphson Method. The system has nine nonlinear algebraic equations,

which are computed using nine Legendre Wavelet basis functions and collocation points inside the interval (0, 1).

The values of the unknowns Ci were determined, and the dimensionless temperature was computed using the Eq.

(17).

3.3. Least Square Method

The LSM, initially proposed by [34], is a weighted approach for minimizing the residuals of the test functions, which

satisfies boundary conditions and is used to calculate the nonlinear differential equations. If all of the squared

residuals are added up continuously [35], then

S =

∫
X

R(X)R(X)dX =

∫
X

R2(X)dX, (24)

in order to minimize this scalar function, all derivatives of S with respect to the unknown coefficients should be

equated to zero, as stated in [35].

δS

δci
= 2

∫
X

R(X)
δR

δci
dX = 0, (25)

the weighted function is

Wi = 2
δR

δci
, (26)

where, the equation’s coefficient ”2” will be eliminated. Then, Eq. (26) can be written as:

Wi =
δR

δci
, (27)

to applying this method, we consider trial solution as follows

θ(X) = 1 + c1(1−X2) + c2(1−X3) + c3(1−X4) + c4(1−X5) + c5(1−X6), (28)
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which satisfies boundary conditions. Now putting the computed values of θ(X), θ′(X), and θ′′(X) into Eqs. (10)

and (11). We obtain residuals R(X, c1, c2, ..., cn) and evaluate the weighted function as described in Eq. (27). We

substitute these residuals and weighted function (Wi, i = 1, 2, ...n) in Eq. (25). Subsequently, we proceed to integrate

Eq. (25) form 0 to 1, and we obtain a system of nonlinear equations in ci. We employ the Newton-Raphson method

to solve these systems of nonlinear equations and derive the values of ci
′s, which we subsequently substitute into

the Eq. (28) in order to achieve the desired solution for the problem.

3.4. Finite Difference Method

Han et al [36] previously highlighted the use and validity of the finite element technique to examine the heat flow

in fins for constant thermal properties. We used the central difference approximation to discretize X co-ordinate.

Setting the central difference formulae as follows:

θ(X) ≈ θi,
dθ

dX
≈ θi+1 − θi−1

2h
,

d2θ

dX2
≈ θi+1,j − 2θi,j + θi−1,j

h2
,

substituting above formulae in Eqs. (10) and (11) with BC Eqs. (12) and (13), we get eleven nonlinear algebraic

equations. Solving this system of equations by well known method.

4. Results and Discussion

The present dimensionless model Eqs. (10)-(13) is a boundary value problem with a system of nonlinear differential

equations. In order to find a resolution for this model, we utilized three separate methodologies: LWCM , LSM ,

and FDM . The approaches were employed to estimate the temperature distribution within a rectangular porous

fin. The findings are displayed in figures 2-12 and tables 1-2.

4.1. Numerical validation of present method

A comparative analysis of the current approach with an exact results is required to validate the accuracy of the

current methodology. In order to calculate the precise answer for a certain scenario, we substitute t f(θ) = f(X) = 1

and Sh = 0 in Eqs. (10) and (11), we obtain

d2θ

dX2
−M2θ = 0, (29)

and boundary conditions are provided in Eqs. (12) and (13).

The exact solution of Eq. (29) is:

θ =
coshMX

coshM
. (30)

Table 1 displays the comparison between the exact solution and the results obtained from the LWCM , LSM ,
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and FDM . the results produced by the LWCM , LSM , and FDM . In order to calculate the findings, we utilize

the following reference values: γ = 0.2, β = 0.0, Sh = 0.0, Q = 0.4, and M = 0.3. From this table, it can be noticed

that the findings obtained from these methods closely align with the exact results. In order to determine the highest

level of accuracy among these methods, we do error analysis as presented in Table 2. An observation reveals that,

the error in LWCM is less as compared to LSM and FDM .This demonstrates the legitimacy of LWCM . So for

further calculations, we employed the LWCM .

Table 1: A comparative analysis of Exact result with LWCM,FDM and LSM in case 1.

X Exact LWCM FDM LSM

0.0 0.956627911900248 0.956627911900249 0.956628107692020 0.956627911900222

0.1 0.957058426747764 0.957058426747753 0.957058620610012 0.957058426749248

0.2 0.958350358782735 0.958350358782722 0.958350546851783 0.958350358783170

0.3 0.960504870831200 0.960504870831203 0.960505049233111 0.960504870828954

0.4 0.963523902099437 0.963523902099422 0.963524066941668 0.963523902096714

0.5 0.967410169919377 0.967410169919378 0.967410317284990 0.967410169919146

0.6 0.972167172194391 0.972167172194380 0.972167298133904 0.972167172196937

0.7 0.977799190547633 0.977799190547621 0.977799291072906 0.977799190550148

0.8 0.984311294175793 0.984311294175771 0.984311365252331 0.984311294175578

0.9 0.991709344411717 0.991709344411725 0.991709381990155 0.991709344410103

1.0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000

Table 2: Error analysis of Exact solution with LWCM, FDM and LSM for case 1.

X Percentage Error

LWCM FDM LSM

0.0 1.0445×10−13 2.04669 ×10−5 2.71571×10−12

0.1 1.14844×10−12 2.02561×10−5 1.55062 ×10−10

0.2 1.35543×10−12 1.96242×10−5 4.5389 ×10−11

0.3 3.12086×10−13 1.85738×10−5 2.33833×10−10

0.4 1.55554×10−12 1.710×10−5 2.82601×10−10

0.5 1.03286×10−13 1.5233×10−5 2.38821 ×10−11

0.6 1.13058×10−12 1.29545×10−5 2.61897 ×10−10

0.7 1.22626×10−12 1.02808×10−5 2.57209 ×10−10

0.8 2.23328×10−12 7.22094×10−6 2.18365 ×10−11

0.9 8.06043×10−13 3.78926×10−6 1.62742 ×10−10

1.0 0 0 0

4.2. Effect of parameters

The preceding section (3) covered the development of a thermal conductivity model that takes into account the

influence of location and temperature on a rectangular porous fin. We take thermal conductivity as temperature

and location dependent to examine the temperature profile in porous fin. In this study, we consider one case for

location-dependent thermal conductivity i.e., linear and three cases for temperature-dependent conductivity namely,

constant, linear, and exponential function of temperature.
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Figures 2-12 illustrate the impact of different parameters, such as thermal conductivity (β), thermo-geometric

(M), porosity (Sh), heat transfer rate (Q), internal heat generation (γ), h value, and thermal conductivity gradient

(B). The parameters are assigned reference values of β = 0.5, Sh = 0.5, γ = 0.5, B = 0.5,M = 0.5, and Q = 0.5.

4.2.1. Effects of parameters on temperature dependent porous fin

Figure 2 depicts the consequences of the thermal conductivity parameter (β) on the temperature profile in fin for

case 1 and 2. From this figure, we deduced that the temperature in fin goes up with higher thermal conductivity

values. Significantly, the temperature distribution for case 3 is higher than that of case 2. Consequently, in terms of

X
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Figure 2: Effect of thermal conductivity parameter on
temperature profile in fin for cases 2 and 3.
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Figure 3: Impact of the porosity parameter on tempera-
ture profile in fin for cases 1, 2 and 3.

the cooling process, case 2 exhibits more efficiency compared to case 3. Figure 3 illustrates how the porosity

parameter (Sh) affects the temperature profile in fin for cases 1, 2, and 3. We noticed that as the value of Sh

rises, the temperature within the fin drops for cases 1, 2, and 3. This finding indicates that the fin’s temperature

tends to decrease with lower Darcy and Rayleigh numbers or higher effective thermal conductivity ratios. Figure 4

represented the impact of an internal heat generation parameter (γ) on the fin’s temperature profile for cases 1, 2

and 3. Our observation revealed that the temperature within the fin goes up with higher values of γ for cases 1, 2,
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Figure 4: Consequences of internal heat generation pa-
rameter on temperature profile in fin for cases 1, 2 and
3.
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Figure 5: The impact of thermo-geometric parameter on
temperature profile in the fin for cases 1, 2 and 3.
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and 3. Figure 5 illustrated how thermo-geometric parameter M effect the fin temperature profile for case 1, 2

and 3. We concluded that as the value of M climbs for cases 1, 2, and 3, the temperature within the fin reduces.

This suggests that, the fin’s temperature goes down with higher effective thermal conductivity values or shorter fin

lengths. Figure 6 displays the impact of heat transfer rate (Q) on the temperature profile within the fin for cases 1,

2, and 3. Our finding illustrates that as the value of Q grows, the temperature within the fin likewise rises for cases

1, 2, and 3. This shows that the fin’s temperature goes up as both the kinematic viscosity and fin thickness grows,

or as both the specific heat and coefficient of thermal expansion decrease. Figure 7 demonstrates the influence of

varying h in FDM on temperature distribution in fin for case 1. We observed that, the accuracy of the results incre-
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Figure 6: Effect of heat transfer rate on temperature pro-
file in the fin for cases 1,2 and 3.
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Figure 7: Impact of h on temperature distribution in fin
for case 1.

-ased when the value of h decreased. Figures 3, 4, 5, 6, we noticed that, the temperature in porous fin for case 3 is

greater as compared to case 2 and 1. It suggests that, case 1 is more efficient then other cases for cooling process.

4.2.2. Effects of parameters on location dependent porous fin

Figure 8 demonstrates the impact of thermal conductivity gradiant parameter (B) on the temperature profile in fin.

We inferred that, the temperature within the fin rises with greater values of parameter B. Figure 9 exhibits the

impact of the porosity parameter (Sh) on the temperature profile within the fin. Our observation indicates that as
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Figure 8: Effect of thermal conductivity gradiant B on
temperature profile in fin.
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Figure 9: Effect of porosity parameter on temperature
profile in fin.
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the value of (Sh) rises, the temperature within the fin drops. This finding indicates that the fin’s temperature

tends to decrease with lower Darcy and Rayleigh numbers or higher effective thermal conductivity ratios. Figure 10

illustrates how internal heat generation parameter γ affects the temperature profile within the fin. It was noted that

the temperature within the fin rises with higher values of γ. Figure 11 depicted the influence of heat transfer rate

(Q) on the temperature profile within the fin. We deduced that, the temperature within the fin rises as the value of

Q rises. This shows that the fin’s temperature goes up as both the kinematic viscosity and fin thickness grows, or

as both the specific heat and coefficient of thermal expansion decrease. Figure 12 illustrated the consequences of
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Figure 10: Effect of heat generation parameter on tem-
perature profile in fin.
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Figure 11: Effect of heat transfer rate on temperature
profile in fin.

thermo-geometric parameter (M) on the temperature profile within the fin. We concluded that, the temperature

within the fin goes down as the value of M rises. This suggests that, the fin’s temperature goes down with higher

effective thermal conductivity values or shorter fin lengths.
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Figure 12: Impact of thermo-geometric parameter on
temperature profile in fin.

5. Conclusions

In this paper, we consider a mathematical model and simulation technique for analyzing heat transfer in a porous fin,

where the properties are influenced by temperature and location. The entire analysis has been done in dimensionless

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

209 Surjan Singh et al 198-213



form. To address our research objective, we employ three distinct methods: LWCM,FDM and LSM . The main

significant outcomes are summarized below:

• The results of LWCM is correct up to twelve or thirteen decimal places with exact results as compared to

FDM and LSM .

• The temperature in fin decreases when the values of Sh and M rises.

• The temperature in fin increases as the values of β,B,Q and γ increase.

• In case 1, the temperature is noticeably lower in comparison to cases 2 and 3. This observation implies that

case 1 exhibits enhanced efficiency in the context of the cooling process within the fin.

• In the context of a linear case, it becomes evident that the temperature within a location-dependent porous

fin is relatively lower than a temperature-dependent porous fin.

This research is novel for the incorporation of spatial and temperature-dependent thermal conductivity, as well as

the solution of a complex nonlinear issue utilizing a hybrid numerical technique i.e., LWCM . As a result, the present

method is applicable to highly nonlinear fin problems. It can be used in the engineering industry to improve the

quality of fins. The future work can be extended for nanofluids with different shapes and size of the nano-particles.

NOMENCLATURE

P Fin perimeter (m)

β
′

coefficient of thermal expansion (K−1)

Keff effective thermal conductivity ratio (W/mK)

T local fin temperature (K)

Tb fin base temperature (K)

T∞ Sink temperature for convection (K)

t thickness of the fin (mm)

h heat transfer coefficient over the fin surface (W (m2K))

L length of the fin (m)

g gravity constant (ms2)

cp specific heat (J(kg −K))

K permeability of the porous fin (m2)

ka thermal conductivity at the base of the fin (Wm−1k−1)

x axial length measured from fin tip (m)

q internal heat generation (W/in3)

Da Darcy number (m2)

v kinematic viscosity (m2s)

a constant, dimensions vary absorption coefficient (m2)

Dimensionless parameter
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β thermal conductivity parameter

θ temperature in fin

Ra Rayleigh number

X length of the fin

Q heat transfer rate per unit area

γ internal heat generation

Sh porosity

M thermo-geometric parameter

B thermal conductivity gradiant parameter

Abbreviation

LWCM Legendre Wavelet Collocation Method

FDM Finite Difference Method

LSM Least Square Method

BC Boundary Conditions
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Abstract

Newly discovered, incomplete forms of special functions are increasing
the interest of both pure and applied mathematicians. The main pur-
pose of this work is to derive four theorems on partial derivatives with
incomplete Aleph functions of two variables and generalize them up to
r-variables. In addition to these theorems, we also established some novel
formulae on the partial derivatives that play a key role in deriving the
main results in terms of finite sum. Further, we generalize the result and
obtain the finite sum for the incomplete Aleph functions with r-variables.
Here, we also established some particular cases that are in most general
character and including the results given earlier by Buschman and Desh-
pande and may prove significant in numerous interesting situations ap-
pearing in the literature on mathematical analysis, applied mathematics
and mathematical physics.
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1 Introduction and Preliminaries

Recently, Tadesse et al. [7], Kumar et al. [5] and Oli et al. [3] have derived some
results on partial derivatives and fractional order derivatives of multivariate
Aleph function. Earlier to that, Buschman [11, 12] and Deshpande [18, 19] have
generated some important results on partial derivatives of special functions of
one variable, two variables and r-variables.
In the 18th century, some fundamental research was initiated in the field of
special functions when Prym (1877) introduced incomplete gamma functions
that were further studied by several authors. Sdland et al. [10] introduced and
investigated the Aleph function in 1998. In 2020, the incomplete forms of the
Aleph function were introduced by Bansal et al. [8].
The incomplete Aleph function with r-variables [6] defined using the Mellin
Barnes type contour integral as given below:

(Γ)ℵ0,n:m1,n1,m2,n2;...;mr,nr
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Similarly, another form of incomplete Aleph function with r-variables is defined

2

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

215 Rahul Sharma et al 214-234



by
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Decomposition formula satisfying for incomplete Aleph functions with r-variables
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τi (i = 1, . . . , R), τi(k) (i(k) = 1, . . . , R(k)) are positive real numbers. The in-
tegral path Lil:∞ is a contour starting from l − i∞ to l + i∞ and the poles
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of the contour Lk. The existence conditions for multiple Mellin-Barnes con-
tours (1) can be obtained with the bits of help of multivariable H-function as
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We can reduce incomplete Aleph functions with r-variables defined in (1) or (2)
to the other well-known special functions by establishing values as given below:
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(i) When we set τi = τi(k) = 1 (k = 1, . . . , r), the multivariable incomplete
Aleph functions reduce to the multivariable incomplete I-functions [16].
(ii) When we set r = 1, the incomplete Aleph functions with r-variables reduce
to the incomplete Aleph-functions [8, 20, 17].
(iii) When we set r = 1 and τi = τi(k) = 1 (k = 1, . . . , r), the multivariable
incomplete Aleph functions reduce to the incomplete I-functions [9, 15].
(iv) By setting y = 0 and τi = τi(k) = 1 (k = 1, . . . , r), the multivariable incom-
plete Aleph functions reduce to the multivariable I-function defined by Sharma
et al. [4].
(v) By setting y = 0, τi = τi(k) = 1 and R = R(k) = 1 (k = 1, . . . , r), the multi-
variable incomplete Aleph-functions reduce to the multivariable H-function [14].
(vi) When we set y = 0 and r = 1, the multivariable incomplete Aleph functions
reduce to the Aleph-function [10].

In the upcoming sections, we explore three formulas which serve as valuable
tools for solving the theorems of sections 3 and 4. Within section 4, we general-
ized Theorem 1 and obtained the finite sum pertaining to the incomplete Aleph
functions with r-variables. Additionally, some particular cases given by several
authors are also discussed in section 5.

2 Formulas

In this particular section, we have developed three formulas that are intended
to assist in resolving the theorems presented in sections 3 and 4.

The incomplete Aleph function can be expressed with two variables (Γ)ℵPQ
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as:
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(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
.

Similarly, the lower form of the incomplete Aleph function of two variables

(γ)ℵPQ
[
Z1

Z2

]
as follows:

(γ)ℵPQ
[
z1

z2

∣∣∣∣ XY
]

=
1

(2πω)2

∫
L1

∫
L2

ϕ′ (s1, s2, y)φ1(s1)zs11 φ2(s2)zs22 ds1ds2, (4)

where

ϕ′ (s1, s2, y) =
γ(1−a1+

∑2
k=1 α

(k)
1 sk,y)

∏n
j=2 Γ(1−aj+

∑2
k=1 α

(k)
j sk)∑R

i=1 τi
[∏pi

j=n+1 Γ
(
aji−

∑2
k=1 α

(k)
ji sk

)∏qi
j=1 Γ

(
1−bji+

∑2
k=1 β

(k)
ji sk

)] .

Now, we derived the following formulas for the incomplete Aleph function with
two variables that will be used for the proof of upcoming theorems.
Formula 1: We derive a formula for the incomplete Aleph function with two
variables as follows:

zρ11 zρ22
(Γ)ℵPQ

[
z1

z2

∣∣∣∣ XY
]

= (Γ)ℵPQ
[
z1

z2

∣∣∣∣ X1

Y1

]
, (5)

where
P = 0, n : m1, n1,m2, n2,
Q = pi, qi, τi;R; pi(1) , qi(1) , τi(1) ;R(1); pi(2) , qi(2) , τi(2) ;R(2),

X1 =
[
a1 + ρ1α

(1)
1 + ρ2α

(2)
1 ;α

(1)
1 , α

(2)
1 , y

]
,
[
aj + ρ1α

(1)
j + ρ2α

(2)
j ;α

(1)
j , α

(2)
j

]
2,n

,[
τi

(
aji + ρ1α

(1)
ji + ρ2α

(2)
ji ;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,
[
c
(1)
j + ρ1ζ

(1)
j , ζ

(1)
j

]
1,n1

,[
τi(1)

(
c
(1)

ji(1)
+ ρ1ζ

(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
c
(2)
j + ρ2ζ

(2)
j , ζ

(2)
j

]
1,n2

,[
τi(2)

(
c
(2)

ji(2)
+ ρ2γ

(2)

ji(2)
, γ

(2)

ji(2)

)
n2+1,p

(2)
i

]
,

Y1 =

[
. . . , τi

(
bji + ρ1β

(1)
ji + ρ2β

(2)
ji ;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
d

(1)
j + ρ1δ

(1)
j , δ

(1)
j

]
1,m1

,[
τi(1)

(
d

(1)

ji(1)
+ ρ1δ

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
[
d

(2)
j + ρ2δ

(2)
j , δ

(2)
j

]
1,m2

,[
τi(2)

(
d

(2)

ji(2)
+ ρ2δ

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
.
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To prove this formula, substitute sk + ρk = sk (ρk ∈ C) and use (3). After
a small simplification, we get the desired result.
Formula 2: For z1 = Λγ11 and z2 = Λγ22 , the partial derivatives of the incom-
plete Aleph function two variables with respect to Λ1,Λ2 defined as:

Λs1Λt2
∂s

∂Λs1

∂t

∂Λt2

(Γ)ℵPQ
[
z1

z2

∣∣∣∣ XY
]

= (Γ)ℵP2

Q2

[
z1

z2

∣∣∣∣ X2

Y2

]
, (6)

where
P2 = 0, n : m1 + 1, n1,m2 + 1, n2,
Q2 = pi, qi, τi;R; pi(1) + 1, qi(1) + 1, τi(1) ;R(1); pi(2) + 1, qi(2) + 1, τi(2) ;R(2),

X2 =
[
a1;α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,[

c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1)

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
, [0, γ1] ,

[
c
(2)
j , ζ

(2)
j

]
1,n2

,[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
, [0, γ2] ,

Y2 =

[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
, [s, γ1] ,

[
d

(1)
j , δ

(1)
j

]
1,m1

,[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
, [t, γ2] ,

[
d

(2)
j , δ

(2)
j

]
1,m2

,[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
.

Formula 3: For z1 = Λ−γ11 and z2 = Λ−γ22 , the partial derivatives of the
incomplete Aleph function two variables with respect to Λ1,Λ2 is as follows:

(−1)
s+t

(Λ1)s(Λ2)t
∂s

∂Λs1

∂t

∂Λt2

(Γ)ℵPQ
[
z1

z2

∣∣∣∣ XY
]

= (Γ)ℵP3

Q3

[
z1

z2

∣∣∣∣ X3

Y3

]
, (7)

where
P3 = 0, n : m1, n1 + 1,m2, n2 + 1,
Q3 = pi, qi, τi;R; pi(1) + 1, qi(1) + 1, τi(1) ;R(1); pi(2) + 1, qi(2) + 1, τi(2) ;R(2),

X3 =
[
a1;α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,

[1− s, γ1] ,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1)

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
, [1− t, γ2] ,[

c
(2)
j , ζ

(2)
j

]
1,n2

,

[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
,

Y3 =

[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
, [1, γ1] ,

[
d

(2)
j , δ

(2)
j

]
1,m2

,[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
, [1, γ2] .
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Similarly, we can derive all three formulas for the lower form of the incomplete

Aleph function with two variables (γ)ℵPQ
[
z1

z2

∣∣∣∣ XY
]
.

3 Main Results

In this section, we produce four theorems concerning the partial derivatives of
incomplete Aleph functions with two variables, each having distinct parameters.
Subsequently, we express these functions in terms of finite sums.

If we put z = N ∈ Z+ in formula (30) of Erdelyi et al. ([1], P.19), we ob-
tain the result as given:

ψ(e+N)− ψ(e) =
N∑
l=1

(−1)
l−1 N !

l(N − l)!
Γ(e)

Γ(e+ l)
, (8)

where function ψ(z) = d
dz log [Γ(z)].

Theorem 1: We derived the partial derivatives of the incomplete Aleph func-
tion with two variables in terms of finite sum for the given values of Λ1 =
N1, Λ2 = N2 as:

∂

∂Λ1

∂

∂Λ2

(Γ)ℵP4

Q4

[
z1

z2

∣∣∣∣ X4

Y4

]
Λ1=N1, Λ2=N2

=
N1!N2!

4

N1−1∑
k1=0

N2−1∑
k2=0

1

k1!k2!(N1 − k1)(N2 − k2)
(Γ)ℵP4

Q4

[
z1

z2

∣∣∣∣ X5

Y5

]
, (9)

where
P4 = 0, n : m1, n1 + 2,m2, n2 + 2,
Q4 = pi, qi, τi;R; pi(1) + 2, qi(1) , τi(1) ;R(1); pi(2) + 2, qi(2) , τi(2) ;R(2),

X4 =
[
a1;α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,(

1− ρ1 ± Λ1

2 , γ1

)
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,(

1− ρ2 ± Λ2

2 , γ2

)
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,

[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
,

Y4 =

[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
[
d

(2)
j , δ

(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
,

X5 =
[
a1;α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,
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[
1− ρ1 + N1

2 , γ1

]
,
[
1− ρ1 + N1

2 − k1, γ1

]
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
1− ρ2 + N2

2 , γ2

]
,
[
1− ρ2 + N2

2 − k2, γ2

]
,[

c
(2)
j , ζ

(2)
j

]
1,n2

,

[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
,

Y5 =

[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
[
d

(2)
j , δ

(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
.

Proof: In the first step, express the left-hand side of (9) in the form of the
Mellin-Barnes integral as given in (3). Further, by using the chain rule of
derivatives and result defined in (8), we have

∂

∂Λ1
Γ

(
ρ1 ±

Λ1

2
+ γ1s1

)∣∣∣∣
Λ1=N1

=
1

2
Γ

(
ρ1 ±

N1

2
+ γ1s1

)
×[

ψ

(
ρ1 +

N1

2
+ γ1s1

)
− ψ

(
ρ1 −

N1

2
+ γ1s1

)]
=

1

2
Γ

(
ρ1 ±

N1

2
+ γ1s1

)
N1∑
L1=1

(−1)L1−1N1!Γ
(
ρ1 − N1

2 + γ1s1

)
L1(N1 − L1)!Γ

(
ρ1 − N1

2 + L1 + γ1s1

) . (10)

Similarly, we can write

∂

∂Λ2
Γ

(
ρ2 ±

Λ2

2
+ γ2s2

)∣∣∣∣
Λ2=N2

=
1

2
Γ

(
ρ2 ±

N2

2
+ γ2s2

)
×[

ψ

(
ρ2 +

N2

2
+ γ2s2

)
− ψ

(
ρ2 −

N2

2
+ γ2s2

)]
=

1

2
Γ

(
ρ2 ±

N2

2
+ γ2s2

)
N2∑
L2=1

(−1)L2−1N2!Γ
(
ρ2 − N2

2 + γ2s2

)
L2(N2 − L2)!Γ

(
ρ2 − N2

2 + L2 + γ2s2

) . (11)

Now, we can write the left-hand side of (9) by using the above-given results in
(10) and (11). We have

=
N1!N2!

4

N1∑
L1=0

N2∑
L2=0

(−1)L1+L2−2

L1L2(N1 − L1)!(N2 − L2)!
×

(Γ)ℵ0,n:m1,n1+3,m2,n2+3
pi,qi,τi;R;p

i(1)
+3,q

i(1)
+1,τ

i(1)
;R(1);pi(2)+3,q

i(2)
+1,τ

i(2)
;R(2)

[
z1

z2

∣∣∣∣∣
[
a1;α

(1)
1 , α

(2)
1 , y

]
,

. . . ,[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,
[
1− ρ1 ± N1

2 , γ1

]
,[

τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,

[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
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[
1− ρ1 + N1

2 , γ1

]
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,[

1− ρ1 + N1

2 − L1, γ1

]
,
[
d

(2)
j , δ

(2)
j

]
1,m2

,

[
1− ρ2 ± N2

2 , γ2

]
,
[
1− ρ2 + N2

2 , γ2

]
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
,[

τi(2)
(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
[
1− ρ2 + N2

2 − L2, γ2

]
 . (12)

Now, consider the incomplete Aleph function with two variables portion of (12)
and for the sake of convenience denote it by T. Thus we can write it as follows:

T = (Γ)ℵ0,n:m1,n1+3,m2,n2+3
pi,qi,τi;R;p

i(1)
+3,q

i(1)
+1,τ

i(1)
;R(1);pi(2)+3,q

i(2)
+1,τ

i(2)
;R(2)

[
z1

z2

∣∣∣∣∣
[
a1;α

(1)
1 ,

. . .,

α
(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,[

τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,
[
1− ρ1 ± N1

2 , γ1

]
,
[
1− ρ1 + N1

2 , γ1

]
[
d

(1)
j , δ

(1)
j

]
1,m1

,

[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,

[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
1− ρ2 ± N2

2 , γ2

]
,[

1− ρ1 + N1

2 − L1, γ1

]
,
[
d

(2)
j , δ

(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
,

[
1− ρ2 + N2

2 , γ2

]
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,

[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
[
1− ρ2 + N2

2 − L2, γ2

]
 . (13)

Now, evaluate the value of Z
− 1
γ1

(N1
2 −ρ1−L1)

1 Z
− 1
γ2

(N2
2 −ρ2−L2)

2 × T, by using the
formula 1 and formula 3, and after little simplification, we arrive at

(−1)
N1+N2−L1−L2(Λ1)

N1/2+ρ1(Λ2)
N2/2+ρ2 ∂N1−L1

∂ΛN1−L1
1

∂N2−L2

∂ΛN2−L2
2

×Λ
(N1/2−ρ1−L1)
1 ×
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Λ
(N2/2−ρ2−L2)
2

(Γ)ℵ0,n:m1,n1+2,m2,n2+2
pi,qi,τi;R;p

i(1)
+2,q

i(1)
,τ
i(1)

;R(1);pi(2)+2,q
i(2)

,τ
i(2)

;R(2)

[
z1

z2

∣∣∣∣ [a1;
. . . ,

[
α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,
[
1− ρ1 + N1

2 , γ1

]2
,[

τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,

[
1− ρ1 + N1

2 , γ1

]2
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,[

d
(1)
j , δ

(1)
j

]
1,m1

,

[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,

[
1− ρ2 + N2

2 , γ2

]2
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,

[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
[
d

(2)
j , δ

(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
 , (14)

where z1 = Λ−γ11 and z2 = Λ−γ22 .
Now applying the Leibniz formula

∂N−L

∂ΛN−L

(
Λ−LΛN/2−ρℵ

[
Λ−γ

z2

])
=
N−L∑
l=0

(
N − L
l

)
∂N−L−l

∂ΛN−L−l
(Λ−L)

∂l

∂Λl
(Λn/2−ρ)ℵ

[
Λ−γ

z2

]
(15)

in (14) and after simplifying it, we have

=

N1−L1∑
l1=0

N2−L2∑
l2=0

(N1 − L1)!(N2 − L2)!Γ(N1 − l1)Γ(N2 − l2)

l1!l2!(N1 − L1 − l1)!(N2 − L2 − l2)!Γ(L1)Γ(L2)
×

ℵ0,n:m1,n1+2,m2,n2+2
pi,qi,τi;R;p

i(1)
+2,q

i(1)
,τ
i(1)

;R(1);pi(2)+2,q
i(2)

,τ
i(2)

;R(2)

[
z1

z2

∣∣∣∣∣
[
a1;α

(1)
1 , α

(2)
1 , y

]
, [aj ;

. . . ,

α
(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,
[
1− ρ1 + N1

2 , γ1

]
,
[
1− ρ1 + N1

2[
τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,

−k1, γ1],
[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1)

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
1− ρ2 + N2

2 , γ2

]
,[

τi(1)
(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
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[
1− ρ2 + N2

2 − k2, γ2

]
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,

[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
[
d

(2)
j , δ

(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
 . (16)

By using (13) and change the order of summations in
∑N1

L1=1

∑N1−L1

l1=0 and∑N2

L2=1

∑N2−L2

l2=0 and inner sums then simplify to L1 = L2 = 1. Consequently,
we get the desired result.

Theorem 2: The incomplete Aleph function with two variables in terms of
finite sum for the given values of Λ1 = N1, Λ2 = N2 as:

∂

∂Λ1

∂

∂Λ2

(Γ)ℵP5

Q5

[
z1

z2

∣∣∣∣ X6

Y6

]
Λ1=N1, Λ2=N2

=
N1!N2!

4

N1−1∑
k1=0

N2−1∑
k2=0

1

k1!k2!(N1 − k1)(N2 − k2)
(Γ)ℵP5

Q5

[
z1

z2

∣∣∣∣ X7

Y7

]
, (17)

where
P5 = 0, n : m1 + 2, n1,m2 + 2, n2,
Q5 = pi, qi, τi;R; pi(1) , qi(1) + 2, τi(1) ;R(1); pi(2) , qi(2) + 2, τi(2) ;R(2),

X6 =
[
a1;α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,[

c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
,

Y6 =

[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
ρ1 ± Λ1

2 , δ1
]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
[
ρ2 ± Λ2

2 , δ2
]
,
[
d

(2)
j , δ

(2)
j

]
1,m2

,[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
,

X7 =
[
a1;α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,[

c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
,

Y7 =

[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
ρ1 − N1

2 , δ1
]
,
[
ρ1 − N1

2 + k1, δ1
]
,[

d
(1)
j , δ

(1)
j

]
1,m1

,

[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
[
ρ2 − N2

2 , δ2
]
,
[
ρ2 − N2

2 + k2, δ2
]
,
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[
d

(2)
j , δ

(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
.

Proof: The proof for Theorem 2 follows a similar approach as that used for
Theorem 1.

Theorem 3: A new variant of the partial derivatives of the incomplete Aleph
function with two variables in terms of finite sum for the given values of Λ1 = N1

as:

∂

∂Λ1

(Γ)ℵP6

Q6

[
z1

z2

∣∣∣∣ X8

Y8

]
Λ1=N1

=
N1!

2

N1−1∑
k1=0

1

k1!(N1 − k1)
(Γ)ℵP6

Q6

[
z1

z2

∣∣∣∣ X9

Y9

]
, (18)

where
P6 = 0, n : m1, n1 + 2,m2, n2,
Q6 = pi, qi, τi;R; pi(1) + 2, qi(1) , τi(1) ;R(1); pi(2) , qi(2) , τi(2) ;R(2),

X8 =
[
a1;α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,[

1− ρ1 ± Λ1

2 , γ1

]
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
,

Y8 =

[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
[
d

(2)
j , δ

(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
,

X9 =
[
a1;α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,[

1− ρ1 + N1

2 , γ1

]
,
[
1− ρ1 + N1

2 − k1, γ1

]
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,

[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
,

Y9 =

[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
[
d

(2)
j , δ

(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
.

Proof: The proof for Theorem 3 can be obtained using the same method em-
ployed in establishing Theorem 1.

Theorem 4: The partial derivatives of the incomplete Aleph function with
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two variables in terms of finite sum for the given values of Λ1 = N1 as:

∂

∂Λ1

(Γ)ℵP7

Q7

[
z1

z2

∣∣∣∣ X10

Y10

]
Λ1=N1

=
N1!

2

N1−1∑
k1=0

1

k1!(N1 − k1)
(Γ)ℵP7

Q7

[
z1

z2

∣∣∣∣ X11

Y11

]
(19)

where
P7 = 0, n : m1 + 2, n1,m2, n2,
Q7 = pi, qi, τi;R; pi(1) , qi(1) + 2, τi(1) ;R(1); pi(2) , qi(2) , τi(2) ;R(2),

X10 =
[
a1;α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,[

c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
,

Y10 =

[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
ρ1 ± Λ1

2 , δ1
]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
[
d

(2)
j , δ

(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
,

X11 =
[
a1;α

(1)
1 , α

(2)
1 , y

]
,
[
aj ;α

(1)
j , α

(2)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , α

(2)
ji

)
n+1,pi

]
,[

c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,[
τi(2)

(
c
(2)

ji(2)
, ζ

(2)

ji(2)

)
n2+1,p

(2)
i

]
,

Y11 =

[
. . . , τi

(
bji;β

(1)
ji , β

(2)
ji

)
m+1,qi

]
,
[
ρ1 − N1

2 , δ1
]
,
[
ρ1 − N1

2 + k1, δ1
]
,[

d
(1)
j , δ

(1)
j

]
1,m1

,

[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
[
d

(2)
j , δ

(2)
j

]
1,m2

,[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
.

Proof: The proof for Theorem 4 can be obtained using the same method em-
ployed in establishing Theorem 1.

4 Generalization of Main Result

In this section, we extend the primary outcome established in Theorem 1 to
encompass the incomplete Aleph function considering r-variables (Γ)ℵPQ[zr] as
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follows:

r∏
k=1

∂

∂Λk
(Γ)ℵ0,n:m1,n1+2,m2,n2+2,...,mr,nr+2

pi,qi,τi;R:p
i(1)

+2,q
i(1)

,τ
i(1)

;R(1),...,pi(r)+2,q
i(r)

,τ
i(r)

;R(r)

 z1

...
zr

∣∣∣∣ [a1;
. . . ,

α
(1)
1 , . . . , α

(r)
1 , y

]
,
[
1− ρ1 ± Λ1

2 , γ1

]
,
[
aj ;α

(1)
j , . . . , α

(r)
j

]
2,n
,[

τi

(
bji;β

(1)
ji , . . . β

(r)
ji

)
m+1,qi

]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,

[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,

[
τi

(
aji;α

(1)
ji , . . . , α

(r)
ji

)
n+1,pi

]
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,[

d
(2)
j , δ

(2)
j

]
1,m2

,

[
τi(2)

(
d

(2)

ji(2)
, δ

(2)

ji(2)

)
m2+1,q

(2)
i

]
, . . . ,

. . . ,
[
1− ρr ± Λr

2 , γr
]
,
[
c
(r)
j , ζ

(r)
j

]
1,nr

,

[
τi(r)

(
c
(r)

ji(r)
, ζ

(r)

ji(r)

)
nr+1,p

(r)
i

]
[
d

(r)
j , δ

(r)
j

]
1,mr

,

[
τi(r)

(
d

(r)

ji(r)
, δ

(r)

ji(r)

)
mr+1,q

(r)
i

]


Λk=Nk

=

∏r
k=1 (Nk)!

2k

N1−1∑
k1=0

· · ·
Nr−1∑
kr=0

1∏r
l=1 [kl!(Nk − kl)]

×

(Γ)ℵ0,n:m1,n1+2,m2,n2+2,...,mr,nr+2
pi,qi,τi;R;p

i(1)
+2,q

i(1)
,τ
i(1)

;R(1),...,pi(r)+2,q
i(r)

,τ
i(r)

;R(r)

 z1

...
zr

∣∣∣∣∣
[
a1;α

(1)
1 , . . . , α

(r)
1 ,

. . . ,

y] ,
[
aj ;α

(1)
j , . . . , α

(r)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , . . . , α

(r)
ji

)
n+1,pi

]
,
[
1− ρ1 + N1

2 , γ1

]
,[

τi

(
bji;β

(1)
ji , . . . β

(r)
ji

)
m+1,qi

]
,

[
1− ρ1 + N1

2 − k1, γ1

]
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
, . . . ,[

d
(1)
j , δ

(1)
j

]
1,m1

,

[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
, . . . ,

[
1− ρr + Nr

2 , γr
]
,
[
1− ρr + Nr

2 − kr, γr
]
,
[
c
(r)
j , ζ

(r)
j

]
1,nr

,[
d

(r)
j , δ

(r)
j

]
1,mr

,
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[
τi(r)

(
c
(r)

ji(r)
, ζ

(r)

ji(r)

)
nr+1,p

(r)
i

]
[
τi(r)

(
d

(r)

ji(r)
, δ

(r)

ji(r)

)
mr+1,q

(r)
i

]
 . (20)

Proof: Initially, we express the left-hand side of (20) in the form of the Mellin-
Barnes integral as given in (1). Further, by applying the chain rule of derivatives
and the result defined in (8), we get

∂

∂Λ1
Γ

(
ρ1 ±

Λ1

2
+ γ1s1

)∣∣∣∣
Λ1=N1

=
1

2
Γ

(
ρ1 ±

N1

2
+ γ1s1

)
×[

ψ

(
ρ1 +

N1

2
+ γ1s1

)
− ψ

(
ρ1 −

N1

2
+ γ1s1

)]
=

1

2
Γ

(
ρ1 ±

N1

2
+ γ1s1

)
N1∑
L1=1

(−1)L1−1N1!Γ
(
ρ1 − N1

2 + γ1s1

)
L1(N1 − L1)!Γ

(
ρ1 − N1

2 + L1 + γ1s1

) . (21)

Similarly, we can generalize (21) for ∂
∂Λk

Γ
(
ρk ± Λk

2 + γksk
)∣∣∣

Λk=Nk
(k = 1, . . . , r−

1). And the last term of the sequence is defined below by:

∂

∂Λr
Γ

(
ρr ±

Λr
2

+ γrsr

)∣∣∣∣
Λr=Nr

=
1

2
Γ

(
ρr ±

Nr
2

+ γrsr

)
×[

ψ

(
ρr +

Nr
2

+ γrsr

)
− ψ

(
ρr −

Nr
2

+ γrsr

)]
=

1

2
Γ

(
ρr ±

Nr
2

+ γrsr

)
Nr∑
Lr=1

(−1)Lr−1Nr!Γ
(
ρr − Nr

2 + γrsr
)

Lr(Nr − Lr)!Γ
(
ρr − Nr

2 + Lr + γrsr
) . (22)

Now, we can write the left-hand side of (20) by using the above-given results in
(21) and (22). After a bit of simplification, We have

=

∏r
k=1 (Nk)!

2k

N1∑
L1=0

· · ·
Nr∑
Lr=0

(−1)L1+L2+···+Lr−r∏r
k=1 Lk(Nk − Lk)!

×

(Γ)ℵ0,n:m1,n1+3,...,mr,nr+3
pi,qi,τi;R;p

i(1)
+3,q

i(1)
+1,τ

i(1)
;R(1),...,pi(r)+3,q

i(r)
+1,τ

i(r)
;R(r)

 z1

...
zr

∣∣∣∣∣
[
a1;α

(1)
1 , . . . ,

. . . ,

α
(r)
1 , y

]
,
[
aj ;α

(1)
j , . . . , α

(r)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , . . . , α

(r)
ji

)
n+1,pi

]
,[

τi

(
bji;β

(1)
ji , . . . , β

(r)
ji

)
m+1,qi

]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,

[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,
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[
1− ρ1 ± N1

2 , γ1

]
,
[
1− ρ1 + N1

2 , γ1

]
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,[
1− ρ1 + N1

2 − L1, γ1

]
, . . . ,

[
d

(r)
j , δ

(r)
j

]
1,mr

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
, . . . ,

[
1− ρr ± Nr

2 , γr
]
,[

τi(r)
(
d

(r)

ji(r)
, δ

(r)

ji(r)

)
mr+1,q

(r)
i

]
,

[
1− ρr + Nr

2 , γr
]
,
[
c
(r)
j , ζ

(r)
j

]
1,nr

,

[
τi(r)

(
c
(r)

ji(r)
, ζ

(r)

ji(r)

)
nr+1,p

(r)
i

]
[
1− ρr + Nr

2 − Lr, γr
]

 . (23)

Now, consider the incomplete Aleph function with two variables portion of (23)
and for the sake of convenience denote it by L. So, we can write it as follows:

L = (Γ)ℵ0,n:m1,n1+3,m2,n2+3
pi,qi,τi;R;p

i(1)
+3,q

i(1)
+1,τ

i(1)
;R(1),...,pi(r)+3,q

i(r)
+1,τ

i(r)
;R(r)

 z1

...
zr

∣∣∣∣∣
[
a1;α

(1)
1 ,

. . .,

. . . , α
(r)
1 , y

]
,
[
aj ;α

(1)
j , . . . , α

(r)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , . . . , α

(r)
ji

)
n+1,pi

]
,[

τi

(
bji;β

(1)
ji , . . . , β

(r)
ji

)
m+1,qi

]
,

[
1− ρ1 ± N1

2 , γ1

]
,
[
1− ρ1 + N1

2 , γ1

][
d

(1)
j , δ

(1)
j

]
1,m1

,

[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,

[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
, . . . ,

[
1− ρr ± Nr

2 , γr
]
,[

1− ρ1 + N1

2 − L1, γ1

]
, . . . ,

[
d

(r)
j , δ

(r)
j

]
1,mr

,

[
τi(r)

(
d

(r)

ji(r)
, δ

(r)

ji(r)

)
mr+1,q

(r)
i

]
,

[
1− ρr + Nr

2 , γr
]
,
[
c
(r)
j , ζ

(r)
j

]
1,nr

,

[
τi(r)

(
c
(r)

ji(r)
, ζ

(r)

ji(r)

)
nr+1,p

(r)
i

]
[
1− ρr + Nr

2 − Lr, γr
]

 . (24)

Now, evaluate the value of
∏r
k=1 Z

− 1
γk

(
Nk
2 −ρk−Lk

)
k ×L, by using the generalized

form of formula 1 and 3, and after simplification. We obtain
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(−1)
∑r
k=1(Nk−Lk)

r∏
k=1

[
(Λk)

Nk/2+ρk ∂Nk−Lk

∂ΛNk−Lkk

Λ
(Nk/2−ρk−Lk)
1

]
×

(Γ)ℵ0,n:m1,n1+2,...,mr,nr+2
pi,qi,τi;R;p

i(1)
+2,q

i(1)
,τ
i(1)

;R(1),...,pi(r)+2,q
i(r)

,τ
i(r)

;R(r)

[
z1

z2

∣∣∣∣∣
[
a1;α

(1)
1 , . . . ,

. . .,

α
(r)
1 , y

]
,
[
aj ;α

(1)
j , . . . , α

(r)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , . . . , α

(r)
ji

)
n+1,pi

]
,[

τi

(
bji;β

(1)
ji , . . . , β

(r)
ji

)
m+1,qi

]
,

[
1− ρ1 + N1

2 , γ1

]2
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,

[
τi(1) ,

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
, . . . ,[

d
(1)
j , δ

(1)
j

]
1,m1

,

[
τi(1)

(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,

[
1− ρr + Nr

2 , γr
]2
,
[
c
(r)
j , ζ

(r)
j

]
1,nr

,

[
τi(r)

(
c
(r)

ji(r)
, ζ

(r)

ji(r)

)
nr+1,p

(r)
i

]
[
d

(r)
j , δ

(r)
j

]
1,mr

,

[
τi(r)

(
d

(r)

ji(r)
, δ

(r)

ji(r)

)
mr+1,q

(r)
i

]
 , (25)

where zk = Λ−γkk (k = 1, . . . , r).
Now applying the Leibniz formula (15) in (25) and simplify it, we have

=

N1−L1∑
l1=0

N2−L2∑
l2=0

· · ·
Nr−Lr∑
lr=0

[
r∏

k=1

(Nk − Lk)!Γ(Nk − lk)

lk!(Nk − Lk − lk)!Γ(Lk)

]
×

ℵ0,n:m1,n1+2,...,mr,nr+2
pi,qi,τi;R:p

i(1)
+2,q

i(1)
,τ
i(1)

;R(1);...,pi(r)+2,q
i(r)

,τ
i(r)

;R(r)

[
z1

z2

∣∣∣∣∣
[
a1;α

(1)
1 , . . . , α

(r)
1 , y

]
,

. . . ,

[
aj ;α

(1)
j , . . . , α

(r)
j

]
2,n

,

[
τi

(
aji;α

(1)
ji , . . . , α

(r)
ji

)
n+1,pi

]
,
[
1− ρ1 + N1

2 , γ1

]
,[

τi

(
bji;β

(1)
ji , . . . , β

(r)
ji

)
m+1,qi

]
,
[
d

(1)
j , δ

(1)
j

]
1,m1

,

[
1− ρ1 + N1

2 − k1, γ1

] [
c
(1)
j , ζ

(1)
j

]
1,n1

,[
d

(1)
j , δ

(1)
j

]
1,m1

,
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[
τi(1)

(
c
(1)

ji(1)
, ζ

(1)

ji(1)

)
n1+1,p

(1)
i

]
,
[
1− ρr + Nr

2 , γr
]
,[

τi(1)
(
d

(1)

ji(1)
, δ

(1)

ji(1)

)
m1+1,q

(1)
i

]
,

[
1− ρr + Nr

2 − kr, γr
]
,
[
c
(r)
j , ζ

(r)
j

]
1,nr

,

[
τi(r)

(
c
(r)

ji(r)
, ζ

(r)

ji(r)

)
nr+1,p

(r)
i

]
[
d

(r)
j , δ

(r)
j

]
1,mr

,

[
τi(r)

(
d

(r)

ji(r)
, δ

(r)

ji(r)

)
mr+1,q

(r)
i

]
 . (26)

By using (24) and change the order of summations in
∑Nk
Lk=1

∑Nk−Lk
lk=0 (k =

1, . . . , r) and inner sums then simplify to Lk = 1 (k = 1, . . . , r). Finally, we
obtain the desired result.
Similarly, We can derive all the theorems for the incomplete Aleph function with
r-variables (γ)ℵPQ[zr] as we derived for (Γ)ℵPQ[zr] and generalized it also as given
in section 4.

5 Particular Cases

In this part, we discuss some important cases of Theorem 1 which can also
comfortably obtain the results identically to Theorem 2, 3 and 4. Further, if
we assign specific values to the parameters in the incomplete Aleph functions of
two variables then we have the following cases.

5.1 In terms of H-function with two variables

By setting y = 0, τi = τi(1) = τi(2) = 1 and R = R(1) = R(2) = 1 in Theorem 1,
we get a known result derived by Deshpande [19] as follows:

∂

∂Λ1

∂

∂Λ2
HP∗

Q∗

[
z1

z2

∣∣∣∣ X∗Y ∗
]

Λ1=N1, Λ2=N2

=
N1!N2!

4

N1−1∑
k1=0

N2−1∑
k2=0

1

k1!k2!(N1 − k1)(N2 − k2)
HP∗

Q∗

[
z1

z2

∣∣∣∣ X∗∗Y ∗∗

]
, (27)

where
P ∗ = 0, n : m1, n1 + 2,m2, n2 + 2,
Q∗ = p, q : p(1) + 2, q(1), p(2) + 2, q(2),

X∗ =
[
aj ;α

(1)
j , α

(2)
j

]
1,n

,
[
1− ρ1 ± Λ1

2 , γ1

]
,
[
c
(1)
j , ζ

(1)
j

]
1,n1

,
[
1− ρ2 ± Λ2

2 , γ2

]
,[

c
(2)
j , ζ

(2)
j

]
1,n2

,
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Y ∗ =
[
bji;β

(1)
ji , β

(2)
ji

]
m+1,qi

,
[
d

(1)
j , δ

(1)
j

]
1,m1

,
[
d

(2)
j , δ

(2)
j

]
1,m2

,

X∗∗ =
[
aj ;α

(1)
j , α

(2)
j

]
1,n

,
[
1− ρ1 + N1

2 , γ1

)
,
(
1− ρ1 + N1

2 − k1, γ1

]
,[

c
(1)
j , ζ

(1)
j

]
1,n1

,
[
1− ρ2 + N2

2 , γ2

]
,
[
1− ρ2 + N2

2 − k2, γ2

]
,
[
c
(2)
j , ζ

(2)
j

]
1,n2

,

Y ∗∗ =
[
bji;β

(1)
ji , β

(2)
ji

]
m+1,qi

,
[
d

(1)
j , δ

(1)
j

]
1,m1

,
[
d

(2)
j , δ

(2)
j

]
1,m2

.

Similarly, we get more results by setting y = 0, τi = τi(1) = τi(2) = 1 and
R = R(1) = R(2) = 1, thus convert Multivariable incomplete Aleph function to
Multivariable H-function in all theorems of section 3.

5.2 In terms of G-function with two variables

By substituting α
(1)
j = α

(2)
j = ζ

(1)
j = ζ

(2)
j = β

(1)
ji = β

(2)
ji = δ

(1)
j = δ

(2)
j = 1 in the

result 5.1, we can transform that result in G-function [13, 2, 14] as follows:

∂

∂Λ1

∂

∂Λ2
G0,n:m1,n1+2,m2,n2+2
p,q:p(1)+2,q(1),p(2)+2,q(2)

 z1

z2

∣∣∣∣∣∣
(aj)1,n ,

(
1− ρ1 ± Λ1

2 , γ1

)
,
(
c
(1)
j

)
,

(bji)m+1,qi
,
(
d

(1)
j

)
1,m1

,

(
1− ρ2 ± Λ2

2 , γ2

)
,
(
c
(2)
j

)(
d

(2)
j

)
1,m2


Λ1=N1, Λ2=N2

=
N1!N2!

4

N1−1∑
k1=0

N2−1∑
k2=0

1

k1!k2!(N1 − k1)(N2 − k2)
×

G0,n:m1,n1+2,m2,n2+2
p,q:p(1)+2,q(1),p(2)+2,q(2)

 z1

z2

∣∣∣∣∣∣
(aj)1,n ,

[
1− ρ1 + N1

2 , γ1

]
,
[
1− ρ1 + N1

2 − k1,

(bji)m+1,qi
,
(
d

(1)
j

)
1,m1

,
,

γ1] , (c
(1)
j )

1,n1
,
[
1− ρ2 + N2

2 , γ2

]
,
[
1− ρ2 + N2

2 − k2, γ2

]
,
(
c
(2)
j

)
1,n2(

d
(2)
j

)
1,m2

 . (28)

By putting suitable values to the parameters, we arrived at the known results
given by Buschman and Despande [11, 12, 18].

6 Conclusions

We summed up this analysis by considering the utility and prospective applica-
tions of the newly derived special functions. Several known and novel outcomes
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involving special functions follow as specific cases of our main findings due to
the most fundamental character of the functions involved in the present work.
The significance of our results lies in many fold generality. Because of the gener-
ality of the incomplete Aleph functions with r-variables, on suitable specializing
the various parameters and variables in these functions from our results, we can
establish extensive varieties of useful results, which are expressible in terms of
families of the incomplete H-functions, incomplete generalized hypergeometric
functions, incomplete I-functions, I-function, Aleph function and many more.
This work will remove the constraints of special functions and these results may
be used to solve a variety of problems in mathematical analysis.
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Abstract

In this paper, we develop an integer and fractional-order susceptible,
infectious, and recovery (SIR) epidemic model based on vital dynamics,
i.e., birth, death, immigration, and variable population size, including
infection and recovery rates. We investigate the stability analysis for the
fractional SIR model on the disease-free and endemic equilibrium points.
The existence and uniqueness conditions of solutions for a stable model
are also discussed. The residual power series (RPS) approach is used
to get the semi-analytical solutions of the proposed model in the form
of convergent fractional power series. The convergence analysis of the
RPS method is also discussed. Numerical results demonstrate the effect
of distinct fractional orders α ∈ (0, 1] on the population density. The
obtained results are exciting and may be beneficial for medical experts to
control the epidemic disease.
Keywords: SIR model, Caputo derivative, Fractional power series, and
Residual power series.

1 Introduction

Fractional calculus is a powerful tool for the mathematical modelling of physical
problems [1, 2, 3]. It has been applied in many research areas, such as science,
economics, engineering, etc. Additionally, fractional differential equations in
nonlinear dynamics have been studied by many researchers [4, 5, 6, 7]. In clas-
sical integer-order epidemic models, the disease spreads between compartments
of the model with an equal chance. The rates of contact and illness transmission
should be constant. A fractional derivative could replace a classical derivative
to learn more about the dynamics of the model [8, 9, 10].

1
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There is no long-lasting protection against several infectious illnesses. Some
infections recover, and some people become susceptible after an infection. The
SIR model studies this kind of illness. The schematic of the susceptible, in-
fectious, and recovery (SIR) model is shown in Fig. 1. Here, S(t), I(t), and
R(t) represent the number of susceptible individuals, the number of infectious
individuals, and the number of recovery individuals, respectively, at time t. λ
is the number of births per unit time. µ1, µ2, and µ3 are the numbers of im-
migration and deaths per unit of time for S, I, and R, respectively. r1 and r2
are the numbers of infectious people per infected person per unit of time and
the number of recovered people per unit of time, respectively. The considered
population size at time t is N(t) = S(t) + I(t) + R(t).

Figure 1: SIR Epidemic Model.

Researchers have successfully investigated several generalized variations of
the classical and fractional-order epidemic models. Hethcote and Driessche [11]
studied an susceptible-infectious-susceptible (SIS) epidemic model with vari-
able population size. Ackleh and Allen [12] and Zaman et al. [13] discussed the
SIR epidemic model with varying population sizes. El-Saka [14] addressed frac-
tional epidemic models like SIR and susceptible-infectious-recovery-susceptible
with varying population sizes. The SIR model with varying population sizes
and continuous recruitment was examined by Bakare et al. [15]. Hassouna et
al. [16] studied a fractional SIS epidemic model with varying population sizes.
Fractional-order SIR epidemiological models were examined by Tafhvaei et al.
[17]. Koziol et al. [18] discussed the influence of fractional order values on the
dynamic properties of the SIR model. The SIR, susceptible-exposive-infectious-
recovery, and susceptible-exposive-infective-asymptomatic-recovery models with
fractional orders were reviewed by Chen et al. [19]. Balzotti et al. [20] studied
the fractional SIS epidemic model with varying population sizes. Meena and
Kumar [21, 22] discussed the fractional SIR and SIS epidemic models with con-
stant population size. Sidi Ammi et al. [23] studied the diffusive SIR epidemic
model described by reaction-diffusion equations involving a fractional deriva-
tive. A fractional SIR epidemic model with treatment cure rate was discussed
by Sadki et al. [24].

The above-cited articles considered SIR models with constant population
sizes. To the best of the author’s knowledge, the study of the integer and

2
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fractional order SIR models, considering the model’s vital dynamics and variable
population size, is lacking in the literature. So, in this paper, we develop integer
and fractional order SIR epidemic models consisting of susceptible, infectious,
and recovery groups with birth, immigration, death, infection, and recovery
rates for variable population sizes. Moreover, parameters (i.e., λ, µ1, µ2, and µ3)
are added to discuss more insight into the model’s dynamics. These parameters
are directly associated with particular groups and also affect the population
sizes during the disease.

In the present study, we deal with the aforementioned integer and fractional-
order SIR epidemic models. The linearization procedure is used to discuss the
stability analysis of the fractional model with disease-free and endemic equilib-
rium points. The existence and uniqueness of the solutions for the stable model
are also examined. Semi-analytical solutions of the proposed model are obtained
in the form of a fast-convergent series with the help of the RPS method. The
absolute errors between the semi-analytical and numerical solutions using the
Runge-Kutta (RK) method for α = 1 are obtained to show the RPS method’s
effectiveness. The effect of the fractional order (α) on population densities is
also discussed. The numerical and graphical results show that this study can
benefit researchers, policy-makers, and medical experts understand the dynam-
ics of epidemic models.

The structure of the paper is as follows: After the introduction in Section 1,
some basic definitions of fractional calculus are listed in Section 2. A mathemat-
ical model is formulated in Section 3. The stability and existence of a uniformly
stable solution for the proposed model are discussed in Section 4 and Section 5,
respectively. Section 6 discusses the procedures of the RPS Method and the
solution of the model. Numerical results and graphs are discussed in Section 7,
and the outcomes of the study are concluded in Section 8.

2 Preliminaries

This section discusses the definitions and properties of fractional calculus. The
fractional derivative has a variety of fascinating definitions. Yet, given their ad-
vantage over issues with an initial value, we use the well-known Caputo deriva-
tives in the present study.

Definition 2.1 [25] The Caputo fractional derivative of order α of function
r(y) is defined as:

C
0 D

α
y r(y) =


1

Γ(q − α)

∫ y

0

r(q)(v)

(y − v)α+1−q
dv, if (q − 1) < α < q, q ∈ N,

dq

dyq
r(y), if α = q, q ∈ N.

Definition 2.2 [26, 27] The fractional power series (FPS) about y = y0 can be

3
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defined as

∞∑
j=0

lj(y − y0)jα = l0 + l1(y − y0)α + l2(y − y0)2α + . . . ;

(q− 1) < α ≤ q, q ∈ N, y ≥ y0. Where lj , j = 0, 1, 2, . . . are the coefficients of
the FPS.

Theorem 2.1 [26, 27] A FPS of the function r(y) about y = y0 can be defined
as

r(y) =
∞∑
j=0

lj(y − y0)jα, y0 ≤ y < (y0 + ρ).

It was found that if C
0 D

jα
y0
r(y), ∀j = 0, 1, 2, . . . are continuous on (y0, y0 + ρ),

then lj =
Dj

y0
r(y0)

Γ(1 + jα)
. Where ρ is the radius of convergence and C

0 D
jα
y0

=

C
0 D

α
y0

C
0 D

α
y0

. . .C0 D
α
y0

(j-times).

Property 2.1 [25] Let r(y) = yq, q ≥ 0,

C
0 D

α
y y

q =


Γ(q + 1)

Γ(q + 1 − α)
yq−α, if q ≥ ⌈α⌉,

0, if q < ⌈α⌉.

3 Mathematical Model

A mathematical model is vital in analyzing the physical, chemical, linguistic,
etc., systems. The SIR model is general and can be used for the mathemati-
cal study of any disease like influenza, measles, chicken pox, mumps, etc. The
assumption of a fractional-order SIR model in the epidemic has essential im-
plications for the time domain. The fractional order model gives a better way
to understand the physical behavior of the SIR epidemic model than the inte-
ger order model. Following are the assumptions to construct the SIR epidemic
model at time t.

3.1 Assumptions

1. The disease spreads in a particular region with a variable population size
N(t), i.e., S(t) + I(t) + R(t) = N(t).

2. r1S(t)I(t) is total newly infected people from susceptible at time t.

3. r2I(t) is the number of recovered infected persons at time t. The recovered
person has ongoing immunity.

4. The number of births per unit of time t in the susceptible compartment
is λN(t) at the rate λ.

4
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5. The number of deaths and immigration in susceptible, infectious, and
recovered compartments is µ1S(t), µ2I(t), and µ3R(t), respectively, with
rates of µ1, µ2, and µ3.

For integer order, the SIR model with vital dynamics can be formulated as

dS(t)

dt
= λN(t) − r1S(t)I(t) − µ1S(t),

dI(t)

dt
= r1S(t)I(t) − r2I(t) − µ2I(t),

dR(t)

dt
= r2I(t) − µ3R(t),

dS(t)

dt
+

dI(t)

dt
+

dR(t)

dt
=

dN(t)

dt
.


(1)

At t = 0, the initial conditions of the model (Eq. (1)) are given as

S(0) = S0, I(0) = I0, R(0) = R0, and N(0) = N0. (2)

By replacing the integer order derivative with the Caputo derivatives of order
α ∈ (0, 1] in model (Eq. (1)), we have the following model

C
0 D

α
t S(t) = λN(t) − r1S(t)I(t) − µ1S(t),

C
0 D

α
t I(t) = r1S(t)I(t) − r2I(t) − µ2I(t),

C
0 D

α
t R(t) = r2I(t) − µ3R(t),

C
0 D

α
t S(t) + C

0 D
α
t I(t) + C

0 D
α
t R(t) = C

0 D
α
t N(t).

 (3)

At t = 0, the initial conditions of the model (Eq. (3)) are

S(0) = S0, I(0) = I0, R(0) = R0, and N(0) = N0. (4)

Where parameters r1, r2, λ, µ1, µ2, and µ3 are the positive constants.

4 Stability Analysis of the Fractional SIR Epi-
demic Model

In this section, we discuss disease-free and endemic equilibrium points of the
model (Eq. (3)) as

C
0 D

α
t S(t) = 0, C

0 D
α
t I(t) = 0, C

0 D
α
t R(t) = 0.

4.1 Disease-free Equilibrium Point

The disease-free equilibrium point (i.e., I = 0) is (SEq, IEq, REq) = (0, 0, 0). We
find matrix

A =

λ− µ1 λ λ
0 −(r2 + µ2) 0
0 r2 −µ3


5
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and its eigenvalues are

λ1 = λ− µ1,

λ2 = −r2 − µ2,

λ3 = −µ3.

Hence, (SEq, IEq, REq) is local asymptotically stable if (λ− µ1) < 0.

4.2 Endemic Equilibrium Point

The endemic equilibrium point (SEq, IEq, REq) = (S⋆, I⋆, R⋆), which is charac-
terized by the existence of infected nodes, i.e., I ̸= 0 is given as

S⋆ =
r2 + µ2

r1
, I⋆ =

µ3(µ1 − λ)(r2 + µ2)

r1 [(λ− r2 − µ2) ∗ µ3 − λr2]
, R⋆ =

r2(µ1 − λ)(r2 + µ2)

r1 [(λ− r2 − µ2) ∗ µ3 − λr2]
.

We find matrix

A =


λ− µ1 −

µ3(r2 + µ2)(λ− µ1)

r2 + µ3(r2 + µ1 − λ)
λ− r2 − µ2 λ

µ3(r2 + µ2)(λ− µ1)

r2 + µ3(r2 + µ1 − λ)
0 0

0 r2 −µ3


and if real parts of its all eigenvalues of matrix A are negative, then (SEq, IEq, REq)
is local asymptotically stable.

5 Existence and Uniqueness of Stable Solution

Let y1(t) = S(t), y2(t) = I(t), and y3(t) = R(t), then

f1(y1(t), y2(t), y3(t)) = (λ− µ1)y1(t) − (λ + r1y1(t))y2(t) − λy3(t),

f2(y1(t), y2(t), y3(t)) = r1y1(t)y2(t) − (r2 + µ2)y2(t),

f3(y1(t), y2(t), y3(t)) = r2y2(t) − µ3y3(t).

Let D = {y1, y2, y3 ∈ R : |yi(t)| ≤ a, t ∈ [0, ρ]} and |fi(y1(t), y2(t), y3(t))| ≤ Mi,
i = 1, 2, 3. Each function f1, f2, and f3 is continuous with respect to the three
parameters y1, y2, and y3. Then on D we have∣∣∣∣ ∂

∂y1
f1(y1, y2, y3)

∣∣∣∣ ≤ k1,

∣∣∣∣ ∂

∂y2
f1(y1, y2, y3)

∣∣∣∣ ≤ k2,

∣∣∣∣ ∂

∂y3
f1(y1, y2, y3)

∣∣∣∣ ≤ k3,∣∣∣∣ ∂

∂y1
f2(y1, y2, y3)

∣∣∣∣ ≤ l1,

∣∣∣∣ ∂

∂y2
f2(y1, y2, y3)

∣∣∣∣ ≤ l2,

∣∣∣∣ ∂

∂y3
f2(y1, y2, y3)

∣∣∣∣ ≤ l3,∣∣∣∣ ∂

∂y1
f3(y1, y2, y3)

∣∣∣∣ ≤ m1,

∣∣∣∣ ∂

∂y2
f3(y1, y2, y3)

∣∣∣∣ ≤ m2,

∣∣∣∣ ∂

∂y3
f3(y1, y2, y3)

∣∣∣∣ ≤ m3,

6
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where ki, li, and mi, i = 1, 2, 3 are positive constants.
Consider the following initial value problem which represents the proposed
model (Eq. (3))

C
0 D

α
t y1(t) = f1(y1(t), y2(t), y3(t)), t > 0, and y1(0) = y10,

C
0 D

α
t y2(t) = f2(y1(t), y2(t), y3(t)), t > 0, and y2(0) = y20, (5)

C
0 D

α
t y3(t) = f3(y1(t), y2(t), y3(t)), t > 0, and y3(0) = y30.

Definition 5.1 By a solution of the system (Eq. (5)), we mean a column vector
(y1(t), y2(t), y3(t))τ , y1, y2, and y3 ∈ C[0, T ], T < ∞ where C[0, T ] is the class
of continuous functions defined on the interval [0, T ] and τ denote the transpose
of the matrix, and

F (Y (t)) = (f1(y1(t), y2(t), y3(t)), f2(y1(t), y2(t), y3(t)), f3(y1(t), y2(t), y3(t)))τ .

Now, applying Theorem 2.1 [28], we deduce that the considered system has a
unique solution. Also, this solution is uniformly Lyapunov stable by Theorem
3.2 [28].

6 Solution using RPS Method

6.1 RPS Methodology

In this section, we apply the RPS method [21, 29, 30, 31, 32, 33] to solve the
proposed model (Eq. (3)) using following steps

Step 1: The FPS for S(t), I(t), R(t), and N(t) about t = 0 can be written as

S(t) =
∞∑
j=0

ajt
jα

Γ(jα + 1)
, I(t) =

∞∑
j=0

bjt
jα

Γ(jα + 1)
,

R(t) =
∞∑
j=0

cjt
jα

Γ(jα + 1)
, N(t) =

∞∑
j=0

djt
jα

Γ(jα + 1)
,


0 ≤ t < ρ. (6)

The nth-truncated series of S(t), I(t), R(t), and N(t) denoted by Sn(t),
In(t), Rn(t), and Nn(t), respectively, are defined as

Sn(t) =
n∑

j=0

ajt
jα

Γ(jα + 1)
, In(t) =

n∑
j=0

bjt
jα

Γ(jα + 1)
,

Rn(t) =
n∑

j=0

cjt
jα

Γ(jα + 1)
, Nn(t) =

n∑
j=0

djt
jα

Γ(jα + 1)
,


0 ≤ t < ρ. (7)

For n = 0, from Eqs. (4) and (7), we obtain

S0(t) = a0 = S0(0) = S0, I0(t) = b0 = I0(0) = I0,

R0(t) = c0 = R0(0) = R0, N0(t) = d0 = N0(0) = N0.
(8)

7
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Now, from Eqs. (7) and (8) the nth-truncated series of Eq. (7) can be
defined as

Sn(t) = a0 +
n∑

j=1

ajt
jα

Γ(jα + 1)
, In(t) = b0 +

n∑
j=1

bjt
jα

Γ(jα + 1)
,

Rn(t) = c0 +
n∑

j=1

cjt
jα

Γ(jα + 1)
, Nn(t) = d0 +

n∑
j=1

djt
jα

Γ(jα + 1)
.

(9)

Step 2: Define the residual functions for model (Eq. (3)) as

ResS(t) = C
0 D

α
t S(t) − λN(t) + r1S(t)I(t) + µ1S(t),

ResI(t) = C
0 D

α
t I(t) − r1S(t)I(t) + (r2 + µ2)I(t),

ResR(t) = C
0 D

α
t R(t) − r2I(t) + µ3R(t),

ResN (t) = C
0 D

α
t N(t) − λN(t) + µ1S(t) + µ2I(t) + µ3R(t).

 (10)

Hence, the nth-residual functions of S(t), I(t), R(t), and N(t), respec-
tively, are

ResSn
(t) = C

0 D
α
t Sn(t) − λNn(t) + r1Sn(t)In(t) + µ1Sn(t),

ResIn(t) = C
0 D

α
t In(t) − r1Sn(t)In(t) + (r2 + µ2)In(t),

ResRn
(t) = C

0 D
α
t Rn(t) − r2In(t) + µ3Rn(t),

ResNn
(t) = C

0 D
α
t Nn(t) − λNn(t) + µ1Sn(t) + µ2In(t) + µ3Rn(t).


(11)

The residual function satisfies the properties, ResS(t) = ResI(t) = ResR(t) =
ResN (t) = 0, ∀t ≥ 0. Also,

lim
n→∞

ResSn
(t) = ResS(t), lim

n→∞
ResIn(t) = ResI(t),

lim
n→∞

ResRn
(t) = ResR(t), lim

n→∞
ResNn

(t) = ResN (t).

From [29], we have

C
0 D

(j−1)α
t ResS(0) = C

0 D
(j−1)α
t ResSi(0),

C
0 D

(j−1)α
t ResI(0) = C

0 D
(j−1)α
t ResIi(0),

C
0 D

(j−1)α
t ResR(0) = C

0 D
(j−1)α
t ResRi

(0),

C
0 D

(j−1)α
t ResN (0) = C

0 D
(j−1)α
t ResNi

(0),


∀j = 1, . . . , n.

Step 3: To determine the coefficients aj , bj , cj , and dj for j = 1, 2, 3, . . . , n,
we substitute the nth-truncated series of S(t), I(t), R(t), and N(t) in

Eq. (11), and then use the Caputo fractional derivative operator D
(n−1)α
0

8
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on ResS(t), ResI(t), ResR(t), and ResN (t). It gives the equations

C
0 D

(n−1)α
t ResS(0) = C

0 D
(n−1)α
t ResSn(0) = 0,

C
0 D

(n−1)α
t ResI(0) = C

0 D
(n−1)α
t ResIn(0) = 0,

C
0 D

(n−1)α
t ResR(0) = C

0 D
(n−1)α
t ResRn

(0) = 0,

C
0 D

(n−1)α
t ResN (0) = C

0 D
(n−1)α
t ResNn

(0) = 0,


∀n = 1, 2, 3, . . . , . (12)

Step 4: Now, the values of aj , bj , cj , and dj for j = 1, 2, 3, . . . , n are obtained
using Eq. (12).

Step 5: The higher accuracy can be obtained by evaluating more coefficients
in Eq. (9).

6.2 Convergence Analysis

This section discusses the convergence analysis of semi-analytical solutions ob-
tained using the RPS method. Let us consider two FPS about z = z0

r(z) =
∞∑
j=0

li(z − z0)jα, rn(z) =
n∑

j=0

lj(z − z0)jα, z0 ≤ z < (z0 + ρ). (13)

Theorem 6.1 [27] If for 0 < P < 1, |rn+1(z)| ≤ P |rn(z)|, ∀n ∈ N and 0 <
z < ρ < 1, then the solution of an FPS converges to an exact solution.
Proof: We have

|r(z) − rn(z)| =

∣∣∣∣∣∣
∞∑

j=n+1

rj(z)

∣∣∣∣∣∣
≤

∞∑
j=n+1

|rj(z)|, ∀ 0 < z < ρ < 1.

≤ |j0|

∣∣∣∣∣∣
∞∑

j=n+1

P j

∣∣∣∣∣∣
=

Pn+1

(1 − P )
|j0| → 0 as n → ∞.

Theorem 6.2 [27] The FPS
∞∑
j=0

ljz
jα, z ≥ 0 has a radius of convergence ρ

1
α ,

if the classical power series expansion

∞∑
j=0

ljz
i, −∞ < z < ∞ has a radius of

convergence ρ.

9
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6.3 Solution

The parameters and initial conditions of the model (Eq. (3)) are taken as r1 =
0.002, r2 = 0.02, λ = 0.007, µ1 = 0.009, µ2 = 0.001, µ3 = 0.003, N0 = 100,
S0 = 75, I0 = 10, and R0 = 15.

For n = 1, from Eq. (7), we get

S1(t) = a0 +
a1t

α

Γ(α + 1)
, I1(t) = b0 +

b1t
α

Γ(α + 1)
,

R1(t) = c0 +
c1t

α

Γ(α + 1)
, N1(t) = d0 +

d1t
α

Γ(α + 1)
.

Using Step (3), 1st-residual functions of S(t), I(t), R(t), and N(t) are obtained
as

ResS1(t) = C
0 D

α
t S1(t) − 0.007N1(t) + 0.002S1(t)I1(t) + 0.009S1(t),

ResI1(t) = C
0 D

α
t I1(t) − 0.002S1(t)I1(t) + 0.021I1(t),

ResR1(t) = C
0 D

α
t R1(t) − 0.02I1(t) + 0.003R1(t),

ResN1(t) = C
0 D

α
t N1(t) − 0.007N1(t) + 0.009S1(t) + 0.001I1(t) + 0.003R1(t).

On substituting S1(t), I1(t), R1(t) and N1(t) into the previous expression and
equating ResS1

(0), ResI1(0), ResR1
(0), and ResN1

(0) to zero, the values of a1,
b1, c1, and d1 are obtained as

a1 = −0.1250, b1 = −0.0600, c1 = 0.1948, and d1 = 0.0098.

Hence, S1(t), I1(t), R1(t), and N1(t) can be written as

S1(t) = 75 − 0.1250tα

Γ(α + 1)
, I1(t) = 10 − 0.0600tα

Γ(α + 1)
,

R1(t) = 15 +
0.1948tα

Γ(α + 1)
, N1(t) = 100 +

0.0098tα

Γ(α + 1)
.

For n = 2, from Eq. (7), we get

S2(t) = 75 − 0.1250tα

Γ(α + 1)
+

a2t
2α

Γ(2α + 1)
, I2(t) = 10 − 0.0600tα

Γ(α + 1)
+

b2t
2α

Γ(2α + 1)
,

R2(t) = 15 +
0.1948tα

Γ(α + 1)
+

c2t
2α

Γ(2α + 1)
, N2(t) = 100 +

0.0098tα

Γ(α + 1)
+

d2t
2α

Γ(2α + 1)
.

Now, from Eqs. (11) and (12), we obtain

a2 = 0.0023, b2 = 0.0001, c2 = −0.0013, and d2 = 0.0012.

Thus, S2(t), I2(t), R2(t), and N2(t) can be written as

S2(t) = 75 − 0.1250tα

Γ(α + 1)
+

0.0023t2α

Γ(2α + 1)
, I2(t) = 10 − 0.0600tα

Γ(α + 1)
+

0.0001t2α

Γ(2α + 1)
,

R2(t) = 15 +
0.1948tα

Γ(α + 1)
− 0.0013t2α

Γ(2α + 1)
, N2(t) = 100 +

0.0098tα

Γ(α + 1)
+

0.0012t2α

Γ(2α + 1)
.
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The rest coefficients of Eq. (9) can be obtained using the following recurrence
relations

aj+1 = λdj − r1

j∑
r=0

arbj−rΓ(jα + 1)

Γ(rα + 1)Γ((j − r)α + 1)
− µ1aj ,

bj+1 = r1

j∑
r=0

arbj−rΓ(jα + 1)

Γ(rα + 1)Γ((j − r)α + 1)
− (r2 + µ2)bj ,

cj+1 = r2bj − µ3cj , dj+1 = λdj − µ1aj − µ2bj − µ3cj ,


∀j = 1, 2 . . . , n. (14)

7 Results and Discussion

To show the convergence of the method (From Eqs. (6), (7) and (13)), val-
ues of |S(t) − Sn(t)|, |I(t) − In(t)|, |R(t) − Rn(t)|, and |N(t) − Nn(t)| at
t = 0.99 with respect to n are plotted in Figs. 2a to 2d for different values
of α = 1.0, 0.99, 0.95, 0.9, and 0.85. It is observed that maximum absolute error
O(10−45) is obtained for n = 20. For n = 10, the maximum absolute errors
is O(10−20). In subsequent calculations, we use n = 10, as it gives sufficient
accuracy.
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Figure 2: Convergence analysis of the RPS approach at t = 0.99 for distinct
fractional orders α ∈ (0, 1].

For α = 1 and n = 10, the absolute errors between RK and RPS methods
in S(t), I(t), R(t), and N(t) are denoted by AbsS(t), AbsI(t), AbsR(t), and
AbsN (t), respectively, which are defined as

AbsS(t) = |S(t)RK − S(t)RPS |, AbsI(t) = |I(t)RK − I(t)RPS |,
AbsR(t) = |R(t)RK −R(t)RPS |, AbsN (t) = |N(t)RK −N(t)RPS |,

}
t ≥ 0.

(15)
For fractional order α = 1 and n = 10, comparison between the RK and

RPS solutions in S(t), I(t), R(t), and N(t) are shown in Table I. Further, the
absolute errors in S(t), I(t), R(t), and N(t) using the RPS and RK methods for
α = 1 are depicted in Figs. 3a to 3d. Here, maximum absolute errors in S(t),
I(t), R(t), and N(t) are O(10−13) for t ∈ (0, 1].

Table I and Figs. 3a to 3d show that the RPS method gives accurate and
reliable results for a minimal computational coefficients.
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Figure 3: Absolute error of S(t), I(t), R(t), and N(t) using RK and RPS
methods, respectively, for α = 1 and n = 10.

Table I: The values of S(t), I(t), R(t), and N(t) using RK and RPS methods
for α = 1 (upto 3 decimal places).

RK method RPS method
t S(t) I(t) R(t) N(t) S(t) I(t) R(t) N(t)

0 75.0 10.0 15.0 100.0 75.0 10.0 15.0 100.0
0.1 74.988 9.994 15.019 100.001 74.988 9.994 15.019 100.001
0.2 74.975 9.988 15.039 100.002 74.975 9.988 15.039 100.002
0.3 74.963 9.982 15.058 100.003 74.963 9.982 15.058 100.003
0.4 74.950 9.976 15.078 100.004 74.950 9.976 15.078 100.004
0.5 74.938 9.970 15.097 100.005 74.938 9.970 15.097 100.005
0.6 74.925 9.964 15.117 100.006 74.925 9.964 15.117 100.006
0.7 74.913 9.958 15.136 100.007 74.913 9.958 15.136 100.007
0.8 74.901 9.952 15.155 100.008 74.901 9.952 15.155 100.008
0.9 74.888 9.946 15.175 100.009 74.888 9.946 15.175 100.009
1.0 74.876 9.940 15.194 100.010 74.876 9.940 15.194 100.010
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Table II: The values of S(t), I(t), R(t), and N(t) via RPS method (upto 3
decimal places).

RPS (α = 0.80) RPS (α = 0.70)
t S(t) I(t) R(t) N(t) S(t) I(t) R(t) N(t)
0 75.0 10.0 15.0 100.0 75.0 10.0 15.0 100.0

0.1 74.979 9.990 15.033 100.001 74.973 9.987 15.043 100.002
0.2 74.963 9.982 15.058 100.003 74.956 9.979 15.069 100.004
0.3 74.949 9.975 15.080 100.004 74.941 9.972 15.092 100.005
0.4 74.936 9.969 15.100 100.005 74.928 9.965 15.112 100.006
0.5 74.923 9.963 15.120 100.006 74.916 9.959 15.132 100.007
0.6 74.912 9.957 15.138 100.007 74.905 9.954 15.149 100.008
0.7 74.900 9.952 15.157 100.008 74.894 9.949 15.166 100.009
0.8 74.889 9.946 15.174 100.009 74.884 9.944 15.182 100.010
0.9 74.878 9.941 15.191 100.010 74.874 9.939 15.198 100.011
1.0 74.867 9.936 15.208 100.011 74.864 9.934 15.213 100.012
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Figure 4: The semi-analytical solutions of S(t), I(t), R(t), N(t) for distinct
fractional orders α ∈ (0, 1] and n = 10.

The RPS solution of S(t), I(t), R(t), and N(t) for α = 0.80 and 0.70 are
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listed in Table II. The behavior of S(t), I(t), R(t), and N(t) for distinct frac-
tional order α ∈ (0, 1] is depicted in Figs. 4a to 4d, respectively. These figures
show that the number of susceptible and infected individuals decreases with a
decrease in α. At the same time, an increase in the recovered and total popu-
lation is observed with a decrease in α.

8 Conclusion

In this paper, we have developed the SIR model (Eq. (3)) with vital dynamics
and variable population sizes for integer and fractional orders. Further, we have
discussed the existence and uniqueness of the solutions for the stable model.
After that, the semi-analytical solutions for the proposed model are obtained
by the RPS approach. For α = 1, we have compared the results obtained by
RPS and the RK methods. The convergence analysis of the RPS technique
is also discussed. It is also observed that with the decline in fractional order
(α), the numbers of susceptible and infected decrease, while the numbers of
recovered personnel and the total population increase. Numerical simulation
and graphs show that the fractional SIR epidemic model with vital dynamics and
variable population size gives a better understanding and produces outstanding
results than an integer SIR epidemic model without vital dynamics and varying
population size. The results indicate that the RPS technique can be used as an
alternative method for solving linear and nonlinear differential equations of any
arbitrary order. This study may be helpful for medical experts in controlling
the infection during the disease.
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Abstract

In this study, we have investigated a diabetes model and its complication using
the Katugampola fractional derivative in Caputo sense. We studied a deterministic
mathematical model that uses non integer derivatives to precisely depict the dy-
namics of diabetes mellitus. We have employed q-homotopy analysis generalized
transform method (q-HAGTM) to find analytical approximate solution for pre-
sented model. Furthermore, the fixed-point theorem is employed to present the ex-
istence as well as uniqueness analysis of obtained solution for the discussed model.
The obtained results are further complemented by conducting numerical simula-
tions, providing graphical demonstrations that support and illustrate the findings.
This approach enables us to understand and develop efficient ways to cure these
diseases.

Keywords: Diabetes model; Caputo-Katugampola fractional derivative; General-
ized Laplace transform

1 Introduction
Diabetes is a rapidly growing global concern, with its occurrence and prevalence on
the rise worldwide. This chronic condition imposes a substantial burden not only on
individuals but also on society as a whole due to the numerous complications associ-
ated with the disease. It is a chronic metabolic disorder characterized by high levels of
glucose in the blood. It occurs when the body either does not produce enough insulin
or cannot effectively use the insulin it produces. There are mainly 2 types of diabetes,
Type 1 diabetes, often referred to as insulin-dependent diabetes mellitus (IDDM), typ-
ically manifests in individuals below the age of 40, although it can occur at any age.
It accounts for approximately 10 to 15 percent of the diabetic population. Type 1 dia-
betes is characterized by an autoimmune response in which the body’s immune system
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mistakenly attacks and destroys the insulin-producing cells in the pancreas. As a re-
sult, people with Type 1 diabetes require lifelong insulin treatment to regulate their
blood sugar levels. Type 2 diabetes, previously known as non-insulin-dependent di-
abetes mellitus (NIDDM), is the most common form of diabetes, accounting for ap-
proximately 85 to 90 percent of all cases. In this the body either does not produce
enough insulin or becomes resistant to its effects, leading to elevated blood sugar lev-
els. Prolonged hyperglycemia (having blood glucose concentration higher than 70-180
mg/dl), can result in long-term complications, such as neuropathy, retinopathy, and
cardiovascular and heart diseases and pose significant risks to individuals and impact
their quality of life and overall health [30, 24, 1]. In 2003, around 194 million people
had diabetes, making up over 3% (5.1% for ages 20 to 79) of the global population.
The prevalence of diabetes is on the rise, and it is projected to reach approximately
333 million people (6.3%) by 2025 [5]. Researchers have produced a multitude of
studies aimed at developing mathematical models for predicting the proliferation of
diabetes and issues coherent with it, such as Pandit et al. [20], Makroglou et al. [17],
Patil et al. [21] and others. Numerous scientists and mathematicians have empiri-
cally validated the usefulness of fractional extensions of integer-order mathematical
models in systematically representing natural phenomena, exemplified by methodolo-
gies such as the Caputo approach, which adeptly captures and represents the inherent
characteristics of real-world processes [28, 10]. Singh et al. [26] presented analy-
sis of fractional diabetes model with exponential law using Caputo–Fabrizio fractional
derivative. Miller and Ross [18], Podlubny [22] authored their work namely “An intro-
duction to the fractional calculus and fractional differential equations” and “fractional
differential equation” respectively in which they focused on derivatives and integrals
of fractional order and highlighted the evolution of fractional calculus and its applica-
tion in modelling physical problems. In this paper we have used Katugampola frac-
tional derivative in Caputo sense to formulate fractional diabetes model including its
inherent complication factors such as its occurrence, spreading, healing and natural
mortality rate. The Caputo derivative [6] and the Riemann-Liouville derivative [9] are
two often used fractional derivatives. A novel fractional order derivative, introduced
by Katugampola [14, 13], provides a generalized fractional derivative encompassing
both the Riemann-Liouville and Hadamard fractional integrals and derivatives. Lately,
Katugampola fractional derivative in Caputo sense has been used due to its ability to
capture both local differentiation and integration properties and provides framework for
handling systems with fractional exponents, which makes it well-suited for modeling
and analyzing systems with fractional dynamics. Almeida et al. in [4] introduced a
fractional operator of new kind, namely Katugampola derivative in Caputo type with
special cases being the Caputo and the Caputo–Hadamard fractional derivatives. In this
article, the diabetes model is developed with the main goal of examining the diabetes
model using a novel non integer order derivative and to studying the specifications re-
garding the existence and uniqueness of the diabetes model’s solution. In this work, we
study the fractional diabetes model by applying the q-HAGTM. The q-HAGTM [25],
which is related to fractional order diabetes modeling is used to find approximate an-
alytical solution. The generalized Laplace transform (GLT) [12] and the q-homotopy
analysis method (q-HAM) [7, 8] are combined in the utilized methodology to produce
an effective result. An advancement of HAM is called q-HAM, which is a more gener-
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alized approach than HAM [15, 16], has been established the search for more elegant
methods to enlarge the convergence region. The q-homotopy analysis method has been
exploited by the authors and used to interpret non-linear arbitrary PDEs [3, 2, 23]. By
Singh et al [27], the q-HATM methodology was presented. In this, unlike prior ap-
proaches no discretization, linearization, or perturbation is required. The q-HAGTM
employs two convergence parameters denoted as n and ℏ which allows greater flexi-
bility in modifying and regulating the convergence rate and region of convergence for
the series solutions. The studied method is novel in sense that it yields a simple opti-
mal solution, a significant region of convergence, and a non-local effect in the attained
solution. Hence, In presented work we have utilized the novel Katumgampola based
fractional derivative model to simulate spread of diabetes in human populus while also
presenting the effect of external factors on it’s occurrence, spreading, healing and nat-
ural mortality rate. This article is presented in following order- we introduce the def-
initions of Caputo derivative, Caputo-Katugampola fractional derivative, generalized
Laplace transform,Katugampola integral opreator in Section 2. In Section 3, funda-
mental procedure of the implemented analytical technique that is q-HAGTM is given.
Description of discussed model is presented in mathematical form in Section 4. In
Section-5, we have obtained analytical solution to fractional order diabetes model and
its complication by using q-HAGTM. In Section 6, the fixed-point theory is used to
investigate the existence and uniqueness of the system’s solutions. Numerical simula-
tion with graphical representation is shown in Section 7. Finally, the conclusion of this
research article is presented in Section 8.

2 Mathematical preliminaries
Definition 1: The fractional order (ρ) Caputo derivative [6] is described as follows,

C
a Dρτξ) (τ) =

1
Γ(l − ρ)

∫ τ

a

ξ(l) (v) dv
(τ − v)ρ+1−l , (l − 1 < ρ ≤ l), l ∈ N. (1)

Definition 2: The Katugampola fractional derivative (KFD) [14, 13] in Caputo kind of
order 0 < ρ ≤ 1 of the function ξ (τ) can be given as

kc
a Dρ,ητ ξ (τ) =

1
Γ(1 − ρ)

∫ τ

a

(
τη − vη

η

)−ρ
ζ
ξ(v)
v1−η dv, (2)

where the differential operator ζ is defined by ζ = τ1−η d
dτ . If we consider η = 1, the

fractional derivative (FD) in Eq. (2) becomes the Caputo fractional derivative with
order ρ . If η approaches 0, then the FD of Eq. (2) results into Caputo-Hadamard FD
of order ρ.
Definition 3: Let ξ,m : [a,∞) → R be real valued function s.t. m(τ) is continuous and
m′(τ) > 0 on [a,∞). Now, if the GLT [12] of ξ(τ) exists, then

Lm {ξ (τ)} (s) =
∫ ∞

a
e−s(m(τ)−m(a))ξ (τ) m′ (τ) dτ, (3)

′s′ being the GLT parameter.
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Note that if we set a = 0 and m (τ)=τ in Eq. (3), then GLT transforms into the classical
Laplace transform (LT) but if we set m (τ) = τ

η

η
and a = 0, then GLT reduces to η−LT

[11]. This inclusive study is represented as the GLT with m (τ) = τη

η
with a = 0 by

τη

η
−LT. Henceforth, the τ

η

η
- LT is described as

L τη
η
{ξ (τ)} (s) =

∫ ∞

a
e−s τ

η

η ξ (τ)
dτ
τ1−η . (4)

The τ
η

η
−LT of the KFD in Caputo kind [11, 29] can be stated as follows

L τη
η

{(
τη

η

)ρ}
(s) =

Γ (1 + ρ)
s1+ρ ,

L τη
η

{(
kcD

ρ,η
τ ξ (τ)

)}
(s) = sρL τη

η
ξ (τ) (s) − sρ−1ξ (0) . (5)

Definition 4: The Katugampola integral operator [14] of fractional order ρ is defined
as

(a+Iρ,ηξ)(τ) =
η1−ρ

Γ(ρ)

∫ τ

a

vη−1

(τη − vη)1−ρ ξ(v)dv. (6)

3 Fundamental plan of q-homotopy analysis general-
ized transform method ( q-HAGTM)

Principal scheme of proposed method is discussed by studying a nonlinear differential
equation associated to the Katugampola derivative. It can be stated as follows

kcD
ρ,η
τ ξ (τ) + Mξ (τ) + Qξ (τ) = f (τ) , l − 1 < ρ ≤ l, (7)

here ξ(τ) is a function in time τ and kcD
ρ,η
τ represents the Caputo-Katugamopla deriva-

tive of order ρ, R denotes the linear bounded operator, Q denotes common nonlinear
differential operator,which is Lipschitz continuous and f (τ) stands for source term.
Apply GLT operator on Eq. (7), we have

L τη
η

[
kcD

ρ,η
τ ξ (t)

]
+ L τη

η

[
Mξ (τ) + Qξ (τ)

]
= L τη

η
[ f (τ)]. (8)

On using the GLT of Caputo-Katugampola fractional derivative, we have

sρL τη
η

[
ξ (τ)

]
(s) − sρ−1ξ (0) + L τη

η

[
Mξ (τ) + Qξ (τ)

]
− L τη

η
[ f (τ)] = 0. (9)

On refining the Eq. (9), we get

L τη
η

[
ξ (τ)

]
(s) −

1
s
ξ (0) +

1
sρ

[
L τη
η

[
Mξ (τ) + Qξ (τ)

]
− L τη

η
[ f (τ)

]
= 0. (10)

Now, we present a nonlinear operator which is given as follows

Q
[
ϕ (τ; q)

]
= L τη

η

[
ϕ (τ; q)

]
−

1
s
ϕ (0; q)

(
0+

)
+

1
sρ

[
L τη
η

[
Mϕ (τ; q) + Qϕ (τ; q)

]
− L τη

η
[ f (τ, q)

]
. (11)
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Here q ∈
[
0, 1

n

]
and ϕ (τ; q) denotes a real valued function. Further, in subsequent

approach, we set a homotopy

(1 − nq) L τη
η

[
ϕ (τ; q) − ξ0 (τ)

]
= ℏqQ[ϕ (τ; q)], (12)

where L τη
η

indicates that the GLT operator, the auxiliary parameter ℏ , 0 and ϕ (τ; q)
is an unknown function, ξ0 (τ) is an initial approximation of ξ (τ). Furthermore, by
substituting the embedding parameter values of q = 0 and q = 1/n , it gives

ϕ (τ; 0) = ξ0 (τ) ϕ

(
τ;

1
n

)
= ξ (τ) . (13)

Therefore, when q progresses from 0 to 1
n , ϕ (τ; q) transforms from ξ0 (τ) to the solu-

tion ξ (τ). Expanding ϕ (τ; q) into a series form by employing Taylor’s theorem about
parameter q, we get

ϕ (τ; q) = ξ0 (τ) +
∞∑

k=1

ξk(τ)qk, (14)

where,

ξk (τ) =
1
k!
∂k

∂qk {ϕ (τ; q)}

∣∣∣∣∣∣
q=0

. (15)

If the initial condition ξ0 (τ), asymptotic parameter n and convergence control parame-
ter ℏ are expressed appropriately, then Eq. (15) converges at q = 1

n , then, we obtain the
subsequent equation

ξ (τ) = ξ0 (τ) +
∞∑

k=1

n−kξk (τ). (16)

The solution given by Eq. (16) is a solution of discussed Eq. (7). Using Eq. (16) and
Eq. (12). Solution of governing equation can be attained as

ξk (τ) = {ξ0 (τ) , ξ1 (τ) , . . . ξk (τ)}. (17)

On differentiating Eq. (12) k-times w.r.t q and then multiplying by 1/k! and substituting
q = 0, we get

L τη
η

[
ξk (τ) − αkξk−1 (τ)

]
= ℏ[Rk(ξk−1)]. (18)

Employing the inverse GLT operator on Eq. (18), we attain the subsequent result

ξk (τ) = αkξk−1 (τ) + ℏL−1
τη

η

[Rk(ξk−1)]. (19)

Where αk is defined as

αk =

0, if k ≤ 1
n, k > 1

(20)

and we represent the value of Rk(ξk−1) as follows

Rk(ξk−1) = L τη
η

[
ξk−1 (τ)

]
−

(
1 −
αk

n

) [
s−1ξ (0) + s−ρL τη

η
f (τ)

]
+ s−ρL τη

η

[
Rξk−1 + Ak−1

]
. (21)

5
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In Eq. (21) Ak exhibit the homotopy polynomial [19] and given as

Ak =
1
Γk

[
∂k

∂qk Qϕ (τ; q)
]

q=0

, (22)

and
ϕ (τ; q) = ϕ0 + qϕ1 + q2ϕ2 + . . . . (23)

On utilizing Eq. (21) in Eq. (19), we attain the subsequent equation

ξk (τ) = (αk + ℏ) ξk−1 (τ) − ℏ
(
1 −
αk

n

)
L−1
τη

η

[
s−1ξ (0) + s−ρL τη

η
f (τ)

]
+ ℏL−1

τη

η

[
s−ρL τη

η

[
Rξk−1 + Ak−1

]]
. (24)

Hence, by utilizing Eq. (24), we can determine various components of ξk (τ) for n ≥ 1
and q-HAGTM solution can be given by the following equation

ξ (τ) =
∞∑

k=0

(
1
n

)k

ξk (τ) . (25)

4 Fractional diabetes mathematical model
The diabetes model in classical form, along with its complications [5] can be given as

dD
dτ
= P − (γ +ϖ) D +C,

dC
dτ
= P + γD − (η +ϖ + α + β) C. (26)

Here C indicates number of diabetics with complications. D denotes number of di-
abetics without complications at time τ. N = N (τ) = C (τ) + D(τ) represents size
of population having diabetes at the time τ. The occurrence of diabetic mellitus is
denoted by P. γ indicates probability of developing a complication. α shows rate at
which patients with complications become severely disabled. β denotes the mortality
rate due to complications. ϖ indicates the rate of natural mortality. η shows rate at
which complications are cured.

dC
dτ
= − (γ + σ) C + γN,

dN
dτ
= P − (α + β) C −ϖN. (27)

Where σ = η +ϖ + α + β, with the initial condition

C(0) = C0,N(0) = N0. (28)

As the classical order derivative does not attribute memory to the system, hence, in
order to contain the whole memory of the system, we change the model (27) from
integer order derivative to the Katugampola fractional derivative in the Caputo sense.

kcD
ρ,η
τ C (τ) = − (γ + σ) C + γN,

kcD
ρ,η
τ N (τ) = P − (α + β) C −ϖN. (29)

6
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5 q-HAGTM algorithm for fractional diabetes model
and its complication

In this section, we solve the fractional order diabetes model and its complication Eq.
(29) subjecting to the initial condition Eq. (28) by q-HAGTM, we get

L τη
η

[
kcD

ρ,η
τ C (τ)

]
(s) = L τη

η

[
− (γ + σ) C + γN

]
,

L τη
η

[
kcD

ρ,η
τ N (τ)

]
(s) = L τη

η

[
P − (α + β) C −ϖN

]
. (30)

After employing the GLT formula for the Katugampola fractional derivative and further
simplification, we get

sρ L τη
η
{C (τ)} (s) − sρ−1C (0) = L τη

η

[
− (γ + σ) C + γN

]
,

sρ L τη
η
{N (τ)} (s) − sρ−1N (0) = L τη

η

[
P − (α + β) C −ϖN

]
. (31)

On simplification Eq. (31), we have

L τη
η
{C (τ)} (s) −

C0

s
−

1
sρ

{
L τη
η

[
− (γ + σ) C + γN

]}
,

L τη
η
{N (τ)} (s) −

N0

s
−

1
sρ

{
L τη
η

[
P − (α + β) C −ϖN

]}
= 0. (32)

We present the non-linear operator given as follows

Q1 {C, τ; q} = L τη
η
{C, τ; q} (s) −

C0

s
−

1
sρ

{
L τη
η

[
−(γ + σ) {C, τ; q} + γ {N, τ; q}

]}
,

Q2 {N, τ; q} = L τη
η
{N, τ; q} (s) −

N0

s
−

1
sρ

{
L τη
η

[
P − (α + β) {C, τ; q} −ϖ {N, τ; q}

]}
.

(33)
The term of the kth order deformation equation are as follows

L τη
η
{Ck (τ) − αkCk−1 (τ)} = ℏR1,k (Ck−1 (τ)) ,

L τη
η
{Nk (τ) − αkNk−1 (τ)} = ℏR2,k (Nk−1 (τ)) . (34)

Where

R1,k (Ck−1) = L τη
η
{Ck−1} −

(
1 −
αk

n

) (C0

s

)
−

1
sρ

{
L τη
η

[
− (γ + σ) Ck−1 + γNk−1

]}
,

R2,k (Nk−1) = L τη
η
{Nk−1}−

(
1 −
αk

n

) (N0

s

)
−

1
sρ

{
L τη
η

[
P − (α + β) Ck−1 −ϖNk−1

]}
. (35)

By using the inverse GLT on Eq. (34), we get

Ck (τ) = αkCk−1 (τ) + ℏL−1
τη

η

R1,k (Ck−1 (τ)) ,

7
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Nk (τ) = αkNk−1 (τ) + ℏL−1
τη

η

R2,k (Nk−1 (τ)) . (36)

Solution to the kth order deformation equation is expressed by

Ck (τ) = αkCk−1 (τ) + ℏL−1
τη

η

{
L τη
η
{Ck−1} −

(
1 −
αk

n

) (C0

s

)
−

1
sρ

{
L τη
η

[
− (γ + σ) Ck−1 + γNk−1

]}}
,

Nk (τ) = αkNk−1 (τ)+ℏL−1
τη

η

{
L τη
η
{Nk−1} −

(
1 −
αk

n

) (N0

s

)
−

1
sρ

{
L τη
η

[
P − (α + β) Ck−1 −ϖNk−1

]}}
.

(37)
Putting k = 1, 2. . . in Eq. (37), we obtain

C1 (τ) = ℏ
[
(γ + σ) C0 − γN0

] 1
Γ (1 + ρ)

(
τη

η

)ρ
,

N1 (τ) = ℏ
[
−P + (α + β) C0 +ϖN0

] 1
Γ (1 + ρ)

(
τη

η

)ρ
. (38)

Similarly

C2 (τ) = (n + ℏ) {ℏ (γ + σ) C0 − γN0}
1

Γ (1 + ρ)

(
τη

η

)ρ
+ℏ2

{[
(γ + σ)2 C0 − γ (γ + σ) N0

]
− γ

[
−P + (α + β) C0 +ϖN0

]} 1
Γ (1 + 2ρ)

(
τη

η

)2ρ

,

N2 (τ) = (n + ℏ)
{
ℏ
[
−P + (α + β) C0 +ϖN0

]} 1
Γ (1 + ρ)

(
τη

η

)ρ
−ℏ {P}

1
Γ (1 + ρ)

(
τη

η

)ρ
+ ℏ2{(α + β)

[
(γ + σ) C0 − γN0

]
+ µ

[
−P + (α + β) C0 +ϖN0

]} 1
Γ (1 + 2ρ)

(
τη

η

)2ρ

.

(39)

By following the same procedure remaining terms for k ≥ 2 find the series solution
of model. So, the solution of fractional order diabetes and its complication model Eq.
(29) is given by

Ck (τ) = C0 (τ) +
1
n

C1 (τ) +
(

1
n

)2

C2 (τ) + . . . ,

Nk (τ) = N0 (τ) +
1
n

N1 (τ) +
(

1
n

)2

N2 (τ) + . . . . (40)

6 Analysis of existence and uniqueness of the obtained
solution

Here, we investigate the existence of a solution for the fractional diabetic model through
the fixed point assumption.

8
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Now, using the Katugamola integral oprator given by Eq. (4) to the system (29), we
obtain the subsequent integral equations

C (τ) −C (0) =
η1−ρ

Γρ

∫ τ

0

[
− (γ + σ) C + γN

]
· vη−1(τη − vη)ρ−1dv,

N (τ) − N (0) =
η1−ρ

Γρ

∫ τ

0
[P − (α + β) C −ϖN] · vη−1(τη − vη)ρ−1dv. (41)

For ingenuity, we find out

K1 (τ,C) =
[
− (γ + σ) C + γN

]
,

K2 (τ,N) = [P − (α + β) C −ϖN]. (42)

Theorem 1: The kernels Ki, i = 1, 2 satisfy the Lipschitz condition, when 0 ≤ Ψ1 <
1, i = 1, 2.
Proof. Suppose K1 (τ,C) =

[
− (γ + σ) C + γN

]
, is the kernel and C (τ) and C1(τ) be

two functions, consequently we obtain the following

∥K1 (τ,C) − K1 (τ,C1)∥ =
∥∥∥[− (γ + σ) C + γN

]
−

[
− (γ + σ) C1 + γN

]∥∥∥ ,
= ∥− (γ + σ) · (C(τ) −C1(τ))∥

≤ − (γ + σ) · ∥(C(τ) −C1(τ))∥

≤ Ψ1∥(C(τ) −C1(τ))∥. (43)

Now consider Ψ1 = − (γ + σ) < 1, let P1 = maxt∈R∥C(τ)∥ and P2 = maxt∈R|N(τ)∥ are
bounded function then, we find

∥K1 (τ,C) − K1 (τ,C1)∥ ≤ Ψ1∥(C(τ) −C1(τ))∥. (44)

Obviously, which is Lipschitz condition for K1. In addition if 0 ≤ Ψ1 < 1. Then C (τ)
has an upper bound.
In the same way, we can show that

∥K2 (τ,N) − K2 (τ,N1)∥ ≤ Ψ2∥(N(τ) − N1(τ))∥. (45)

From Eq. (42) K1 and K2 are the kernels. Then the associate integrals are found

C (τ) = C (0) +
η1−ρ

Γρ

∫ τ

0
K1 (v,C) · vη−1(τη − vη)ρ−1dv,

N (τ) = N (0) +
η1−ρ

Γρ

∫ τ

0
K2 (v,N) · vη−1(τη − vη)ρ−1dv. (46)

Further, we get

Cn (τ) = C (0) +
η1−ρ

Γρ

∫ τ

0
K1 (v,Cn−1) · vη−1(τη − vη)ρ−1dv,

9
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Nn (τ) = N (0) +
η1−ρ

Γρ

∫ τ

0
K2 (v,Nn−1) · vη−1(τη − vη)ρ−1dv. (47)

Where the initial conditions are

C (0) = C0 and N (0) = N0. (48)

After subtracting consecutive terms, we have

Ξn = Cn (τ) −Cn−1 (τ) =
η1−ρ

Γρ

∫ τ

0
(K1 (v,Cn−1) − K1 (v,Cn−2)) × vη−1 (τη − vη)ρ−1 dv,

∆n = Nn (τ) − Nn−1 (τ) =
η1−ρ

Γρ

∫ τ

0
(K2 (v,Nn−1) − K2 (v,Nn−2)) × vη−1 (τη − vη)ρ−1 dv.

(49)
Taking the below

Cn (τ) =
n∑

j=1

Ξ j(τ),

Nn (τ) =
n∑

j=1

∆ j(τ). (50)

Hence forth by applying the tri-angular and norm properties on equation of (49), we
arrive at the following equation

∥Ξn∥ = ∥Cn (τ)−Cn−1 (τ)∥ ≤
η1−ρ

Γρ

∥∥∥∥∥∫ τ

0
(K1 (v,Cn−1) − K1 (v,Cn−2)) × vη−1 (τη − vη)ρ−1 dv

∥∥∥∥∥ ,
∥∆n∥ = ∥ Nn (τ)−Nn−1 (τ)∥ ≤

η1−ρ

Γρ

∥∥∥∥∥∫ τ

0
(K2 (v,Nn−1) − K2 (v,Nn−2)) × vη−1 (τη − vη)ρ−1 dv

∥∥∥∥∥ .
(51)

While satisfying the Lipschitz conditions the kernels yield the following outcomes

∥ Cn (τ) −Cn−1 (τ)∥ ≤
η1−ρ

Γρ

∫ τ

0
∥(K1 (v,Cn−1) − K1 (v,Cn−2))∥ × vη−1 (τη − vη)ρ−1 dv

≤ Ψ1
η1−ρ

Γρ

∫ τ

0
∥Cn−1 −Cn−2∥ × vη−1 (τη − vη)ρ−1 dv,

∥ Nn (τ) − Nn−1 (τ)∥ ≤
η1−ρ

Γρ

∫ τ

0
∥(K2 (v,Nn−1) − K2 (v,Nn−2))∥ × vη−1 (τη − vη)ρ−1 dv

≤ Ψ2
η1−ρ

Γρ

∫ τ

0
∥Nn−1 − Nn−2∥ × vη−1 (τη − vη)ρ−1 dv. (52)

Therefore, we obtain the following

∥Ξn∥ ≤ Ψ1
η1−ρ

Γρ

∫ τ

0
∥Ξn−1(τ)∥ × vη−1 (τη − vη)ρ−1 dv,

10
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∥∆n∥ ≤ Ψ2
η1−ρ

Γρ

∫ τ

0
∥∆n−1(τ)∥ × vη−1 (τη − vη)ρ−1 dv. (53)

Theorem 2. The Katugampola fractional derivative non-integer order fractional dia-
betic model has unique solution provided that the following conditions are satisfied for
τmax.

Ψi

Γρ + 1

(
τηmax

η

)ρ
< 1, i = 1, 2. (54)

Proof. Here, we assume that C (τ) and N (τ) are bounded functions and fulfills the
Lipschitz condition, then using Eq. (53), and using recursive techniques, we have

∥Ξn∥ ≤ ∥C0∥

[
Ψ1

Γρ + 1

(
τηmax

η

)ρ]n

,

∥∆n∥ ≤ ∥N0∥

[
Ψ2

Γρ + 1

(
τηmax

η

)ρ]n

. (55)

All above functions exist and result in Eq. (55), therefore, we will show that these
functions are the solutions to the diabetic model. Then, we have

C (τ) −C (0) = Cn (τ) − An(τ),

N (τ) − N (0) = Nn (τ) − Bn(τ). (56)

Further, we calculate the following norms of An(τ)

∥An(τ)∥ ≤
η1−ρ

Γρ

∥∥∥∥∥∫ τ

0
(K1 (v,C) − K1 (v,Cn−1)) × vη−1 (τη − vη)ρ−1 dv

∥∥∥∥∥
≤
η1−ρ

Γρ

∫ τ

0
∥(K1 (v,C) − K1 (v,Cn−1))∥ × vη−1 (τη − vη)ρ−1 dv

≤ Ψ1
η1−ρ

Γρ

∫ τ

0
∥C −Cn−1∥ × vη−1 (τη − vη)ρ−1 dv

≤
Ψ1

Γρ + 1

(
τη

η

)ρ
∥C −Cn−1∥. (57)

The following equation follows a recursive process

∥An(τ)∥ ≤ ∥C0∥

[
1

Γρ + 1

(
τη

η

)ρ]n+1

Ψ1
nF.

At τmax we obtain

∥An(τ)∥ ≤ ∥C0∥

[
1

Γρ + 1

(
τ
η
max

η

)ρ]n+1

Ψ1
nF. (58)

On the above equation, when we take the limits of both sides, we get ∥An(τ)∥ → 0 at
n→ ∞. It is possible to attain ∥Bn(τ)∥ → 0. Hence, the proof is concluded.
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Uniqueness of Solution: The uniqueness of solutions that is attained in this segment
of the diabetic mathematical model is considered. We assume C1 (τ) and N1 (τ) are the
other solutions of the proposed system, then we have

C (τ) −C1 (τ) =
η1−ρ

Γρ

∫ τ

0
(K1 (v,C) − K1 (v,C1)) × vη−1 (τη − vη)ρ−1 dv. (59)

The following result is obtained by applying the norm to each side of Eq. (59)

∥C (τ) −C1 (τ)∥ ≤
η1−ρ

Γρ

∫ τ

0
∥(K1 (v,C) − K1 (v,C1))∥ × vη−1 (τη − vη)ρ−1 dv. (60)

Lipschitz condition applied to the kernel gives us

∥C (τ) −C1 (τ)∥ ≤ Ψ1
η1−ρ

Γρ

∫ τ

0
∥C −C1∥ × vη−1 (τη − vη)ρ−1 dv, (61)

≤
Ψ1

Γρ + 1

(
τη

η

)ρ
∥C −C1∥. (62)

The following result are obtained

∥C (τ) −C1 (τ)∥ ·
[
1 −

Ψ1

Γρ + 1

(
τη

η

)ρ]
≤ 0,

∥C (τ) −C1 (τ)∥ = 0,

=⇒ C (τ) = C1 (τ) (63)

Considering the above, we can conclude that the first differential equation of the di-
abetic model has a unique solution. Similarly, we also prove that N (τ) have unique
solutions.

7 Numerical simulations
In this section, we have examined the results of numerical simulations for fractional
order diabetes model by using effective and powerful method q-HAGTM. Numerical
values have been computed for C(τ) and N(τ) at ρ = 0.85, 0.90 and 1. Fig.1 explains
the nature of trend followed by diabetic population inhibiting complications C corre-
sponding to time τ for discrete values of fractional derivative order ρ. It shows that with
increase in time, diabetic population having complications increases. Fig. 2 indicates
that the size of diabetic N at time τ also shows incremental behavior with w.r.t time for
distinct values of ρ.
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Figure 1: Nature of C (τ) w.r.t to time τ for distinct values of ρ

Figure 2: Responses of N (τ) w.r.t to time τ for distinct values of ρ
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8 Conclusions
In this study, the nonlinear fractional diabetic model is investigated with the help of
q-HAGTM. The existence and uniqueness of the obtained results are presented using
fixed point theory and the Katugampola fractional integral operator. Some numerical
results are analyzed to describe the effect of the arbitrary order. The effect of various
parameters on the number of diabetic patients with complications and the size of dia-
betic patients over time is shown graphically. The results of this study are very helpful
for medical practitioners dealing with diabetes and related problems. Thus, we have
concluded that the implemented technique is efficient for analyzing the behavior of
these types of problems arising in various fields.
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Abstract

The objective of this research is to ascertain how 3D MHD heat transfer
Casson fluid flow over a linearly porous stretched surface is affected by chem-
ical reaction, radiation, and heat source/sink. The Roseland approximation
is used to account for the radiation impact in the energy equation when ex-
amining the impacts of thermal radiation. Recently, there has been interest
in heat transmission past a stretched sheet because of its numerous commer-
cial applications and substantial impact on a variety of industrial processes.
These consist of metal spinning, plastic sheet extrusion, condensation, heat
exchangers, MHD generators, and power plants. The governing equations and
related boundary conditions are reduced to a dimensionless form using similar-
ity variables, and the Runge-Kutta-Fehlberg method is then used to solve the
problem. An increase in the Casson fluid parameter, magnetic field parameter
and Permeability parameter causes the velocity field to decrease in x and y
directions and improve the temperature and concentration dispersion. Sher-
wood number and Skin friction coefficient over x and y direction are increasing
function of Casson fluid parameter and Nusselt number is decreasing function
while the reverse effect is seen in streatching sheet parameter. Nusselt num-
ber is increasing function of chemical reaction parameter, Schmidt number,
Radiation parameter and heat heat source/sink parameters while the reverse
effect is seen in Sherwood number.

Keywords: Chemical reaction, MHD Casson fluid , Stretching surface, Permeabil-
ity, Heat Source/Sink.

1 Introduction:

The scientific literature has recently shown a great deal of interest in the vast array
of biological uses for non-Newtonian fluids, including muds, low-shear rate blood,
emulsions, apple sauce, sugar solutions, and shampoos. Fluids that do not flow in
a Newtonian manner are referred to as non-Newtonian fluids. The International
Atomic Energy Agency classifies them as actual non-Newtonian fluids that occur in
nature. Numerous mathematical models have been proposed and examined in the
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academic community, and many more are being developed. For instance, a greater
variety of industrial applications employ Casson fluids. This model works well for
researching the mechanics of yield-stress liquids with pseudo-plastic properties.[18]
Thermal radiation, slip velocity, and MHD effects at the stagnation point flow
across the stretched surface were examined. [15] the investigation of MHD in three
dimensions of Casson fluid flow through a porous sheet that is linearly stretched is
done. [9] focused on the impact of double dispersion, non-uniform heat source/sink,
higher-order chemical processes, and MHD Casson fluid flow over a vertical cone
and flat plate saturated with porous material on unstable, free convective flow. [21]
A Casson fluid flow with magnetic nanoparticles incorporated is analyzed. It is
believed that the flow is across a paraboloid of revolutions top surface. Nonlin-
ear thermal radiation and viscous dissipation effects are taken into account. [29]
examined the three-dimensional Newtonian and non-Newtonian MHD fluid flow.
The investigation focuses on mass and heat transmission over a stretched surface
when thermophoresis and Brownian motion are present. [6] Numerous biological
activities, including the distribution of food, endoscopic procedures, the pumping of
blood from the heart to different areas of the body, and the regulation of heat trans-
port phenomena, depend heavily on multiple slips. [17] examined how heat, mass
transport, and thermal radiation affected the three-dimensional Casson nanofluid’s
unstable MHD flow. Partial slip and convective circumstances might affect the flow.
[22] examined the three-dimensional MHD Casson fluid flow across a stretched sheet
using a non-Darcy porous material and a heat source/sink. [30] An unstable Cas-
son fluid with mixed convection flow with slip and convective boundary conditions
approaches a nonlinearly stretched sheet. Additionally examined are the impacts
of Soret Dufour, viscous dissipation, and heat source/sink. [27] The effects of warm
diffusion, chemical response, and heat radiation on the hydromagnetic pulsating flow
of Casson fluid in a porous medium are investigated. [28] Investigations are con-
ducted into the effects of heat radiation, chemical reactions, and thermal diffusion
on the hydromagnetic pulsing flow of Casson fluid in a porous medium. [7] Discover
the two-dimensional MHD movement of the Casson fluid and the dual solutions of
heat transfer over the extension sheet. [14] aimed at describing the characteristics
of melting heat transfer on Casson fluid flow in MHD flow in a porous medium
under thermal radiation effect. [20] analyzed the impact of nonlinear thermal ra-
diation with an non-uniform heat source and sink in the context of homogeneous-
heterogeneous interactions on the three-dimensional Carreau and Casson fluid flow
across a stretched surface in an unstable manner. [24] The study examines the
consistent movement of a hybrid that is incompressible Casson nanofluid on an ex-
ponential stretching sheet that is permeable vertically.[8] The topic discussed is the
unstable free convection slip flow of a second-grade fluid across an infinitely heated
inclined plate. Additionally eligible are the impacts of mass diffusions in the flow.
The constitutive equations for mass transport and heat employ the Caputo-Fabrizio
fractional derivative, respectively.[26] examined the thin-film flow down an inclined
plane of a third-grade fluid. The homotopy perturbation Elzaki transform technique
is an efficient and well-organized computational methodology that is used to deter-
mine the solution of a nonlinear boundary value problem (BVP).[4] Single-walled
carbon nanotubes are solid, microscopic materials found in nature that have good
thermal conductivity and are valuable in many biological applications, particularly
in the creation of biological nanofluid are examined.[12] investigated the features of
heat transmission of a stationary 2D MHD Casson shear thickening liquid through
a perpendicularly extended glass placed in a Variable heat sink/source combined
with a permeable medium. [19] examined a rotating system’s natural convection
MHD Casson fluid flow via an oscillating vertical plate. Using a ramping wall tem-
perature, the properties of thermal radiation, heat production, Hall current, and
chemical reactions are examined. [23] examined how magneto-Casson nanofluid
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Figure 1: Schematic diagram of the Problem

phenomena, which result in thermal radiation passing through a porous inclined
stretched sheet, are affected by chemical reactions and Joule heating. [25] Research
was conducted under the stagnation zone to examine the heat and mass transfer of
a hybrid nanomaterial Casson fluid with time-dependent flow across a vertical Riga
sheet. With this formulation, Lorentz forces were introduced into the system when
the Riga sheet was included in fluid flow models. [1] The investigation concentrated
on the flow over a vertical stretching sheet near the stagnation point of a compress-
ible, unstable Casson hybrid nanofluid flow. [5] achieved to uncover the novelty
of a stretchable sheet with convective boundary conditions driving an incompress-
ible MHD Casson liquid flow. [11] conducted a numerical investigation of the heat
transfer of an electrically directed fluid across a radially extending sheet fixed in a
permeable medium, as well as the axisymmetric mixed convection boundary layer
flow. [16] examined the use of a vertically extended sheet embedded in a permeable
material to explore MHDs varying convective stagnation point stream. [31] Mea-
sured the impact of radiation, Prandtl number, and chemical reaction on the Casson
fluid flow during 3-D MHD heat transfer over a stretched surface with linear poros-
ity. [2] The discussion focuses on Sutterby nanofluid flow at a nonlinear stretching
cylinder with an induced magnetic field. Discussion is held on the impacts of viscous
dissipation, Darcy resistance, and changing thermal conductivity. [3] Uncompress-
ible We study Sutterby fluid flows across a cylinder that is stretched. When thermal
slip, Darcy resistance, and sponginess are present, the impact of varying thermal
conductivity is taken into account. [10] examined the effects of heat Source/Sink,
joule heating, and thermal radiation on the two-dimensional nanofluid stagnation
point flow above a stretched sheet anchored in a spongy medium. [13] Accessible
properties include the transfer of melting heat through an exponentially stretched
sheet placed in a porous material with a heat source and sink, as well as radiation
and velocity slip on an MHD stream.
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2 Construction of the Problem:

Consider the incompressible, electrically conducting steady 3D viscous Casson fluid
movement on a surface that is extending. It is considered that the sheet is en-
larged along xy-plane and stretched with velocities Uw = ax,Vw = by in x- and
y -directions (where a, b, are stretching constants), while the fluid is place along
z-axis. let (u,v,w) denotes the components of velocity along the (x,y,z) paths corre-
spondingly. The physical coordinate system and geometry of this model are exposed
in Fig. 1. The Hall current and the Joule dissipation are not taken into considera-
tion and both the consequences of chemical response and the effects of radiation are
taken into account.The rheological equation of a Casson fluid can be articulated as

τij = 2

(
µB +

pz√
2π

)
eij , π > πc

= 2

(
µB +

pz√
2πc

)
eij , π < πc

(1)

where π = eijeji, eij is the (i,j)ˆth component of the deformation rate with itself,
πc is the decisive value of this product based on the shear thickening model, µB is
the plastic dynamic viscosity of Casson fluid, and py is the yield stress of the fluid
Equation of Continuity

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2)

Equation of Momentum

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν

(
1 +

1

β

)
∂2u

∂z2
− σB0

2u

ρ
− ν

k
u, (3)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ν

(
1 +

1

β

)
∂2v

∂z2
− σB0

2v

ρ
− ν

k
v, (4)

Equation of Energy

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

k

ρCp

∂2T

∂z2
− 1

ρcp

∂qr
∂z

+τ

(
Db

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
)

+
Q∗(T − T∞)

ρcp

(5)

Equation of Species Diffusion

u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= Db

∂2C

∂z2
+
DT

T∞

∂2T

∂z2
− Cr

∗ (C − C∞) (6)

The boundary conditions for this flow are

u = uw(x) = ax, v = Vw(x) = by, C = Cw, T = Tw, at z = 0, and

u→ 0, v → 0, T → T∞, C → C∞, as z → ∞
(7)

The radiative heat flux, according to the Rosseland’s estimate, is

qr = −4

3

σ∗

k∗
∂T 4

∂z
(8)
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Where the Stefan-Boltzmann constant σ∗ and the mean absorption coefficient k∗,
respectively, are the values. The growth of T 4 near T∞ in the Tailor series is

T 4 = 4TT∞
3 − 3T∞

4 (9)

Now let us utilize the ensuing similarity conversions
The velocity components can be defined as follows in terms of the stream function
ψ as

η =

√
a

ν
y , u = axf ′(η), v = byg′(η), , w = −

√
aν(f(η) + cg(η))

θ(η) =
(T − T∞)

(Tw − T∞)
, ϕ(η) =

(C − C∞)

(Cw − C∞)

(10)

Here c = b
a , is the velocity ratio among the x and y axes, and (ˆ) denotes diff. w.

r. to η
By use of Eq. (8), (9), and (10), Eqs. (3), (4), (5), and (6) take the below form(

1 +
1

β

)
f

′′′
+ (f + cg)f

′′
− f

′2
− (M +K)f

′
= 0, (11)

(
1 +

1

β

)
g

′′′
+ (f + cg)g

′′
− cg

′2
− (M +K)g

′
= 0, (12)

(1 +Ra)θ
′′
+ Pr[Nbθ

′
ϕ

′
+Ntθ

′2
+ (f + cg)θ

′
+ δθ] = 0 (13)

ϕ
′′
+
Nt

Nb
θ
′′
+ Sc

[
(f + cg)ϕ

′
− Crϕ

]
= 0, (14)

the corresponding boundary conditions (7) become

f(0) = 0, g(0) = 0, f
′
(0) = 1, g

′
(0) = c, θ(0) = 1, ϕ(0) = 1,

f
′
(∞) → 0, g

′
(∞) → 0, θ(∞) → 0, ϕ(∞) → 0,

(15)

with respect to the relevant physical characteristics

where M = σB0
2

ρa , hint to the magnetic restriction, K = ν
ka is the permeability

parameter, Pr = ν
α is Prandtl number, Ra = 16σ∗T∞

3

3kk∗ is radiation parameter,

Nb = τDb(Cw−C∞)
ν shows the Brownian motion parameter, Nt = τDT (Tw−T∞)

νT∞

is thermophoresis parameter, δ = Q∗

ρCpUw
heat source/sink, parameter, Sc = ν

Db

Schmidt number, and Cr = Cr
∗

a is the chemical reaction.
Quantities of physical interest, the physical parameters of the friction factor over x,
y paths, and the Nusselt number and Sherwood numbers are shown.

Cf x =
τwx

ρUw
2 ⇒ Cf xRex

1
2 =

(
1 +

1

β

)
f

′′
(0) (16)

Cf y =
τwy

ρVw
2 ⇒ Cf yRey

1
2 =

(
1 +

1

β

)
1

c
g

′′
(0) (17)

Nux =
xqw

k(Tw − T∞)
⇒ NuxRex

−1
2 = −θ

′
(0) (18)

Shx =
xqm

Db(Cw − C∞)
⇒ ShxRex

−1
2 = −ϕ

′
(0) (19)
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where

qw = −k
(
∂T

∂z

)
z=0

, qm = −
(
Db

∂C

∂z

)
z=0

(20)

Rex = xUw

ν and Rey = yVw

ν are the local Reynolds numbers.

Mathematical process for result:
The result of equations. (11), (12), (13), and (14) jointly through borderline cir-
cumstances (15) is determined through a systematic numerical method be aware
shooting technique. We translate the nonlinear equivalences into first-order regular
differential equivalences by labeling the variable quantity i.e.
f = f1, f

′
= f2, f

′′
= f3,g = f4, g

′
= f5, g

′′
= f6, θ = f7, θ

′
= f8, ϕ = f9,

ϕ
′
= f10,

Hence, the system of equations becomes

f
′

1 = f2, (22)

f
′

2 = f3, (23)

f
′

3 =

(
1 +

1

β

)−1

[f22 − (f1 + cf4)f3 + (M +K)f2] (24)

f
′

4 = f5, (25)

f
′

5 = f6, (26)

f
′

6 =

(
1 +

1

β

)−1

[cf25 − (f1 + cf4)f6 + (M +K)f5] (27)

f
′

7 = f8, (28)

f
′

8 = (1 +Ra)
−1

[Nbf8f10 +Ntf8
2 + (f1 + cf4)f8 + δf7] (29)

f
′

9 = f10, (30)

f10
′
= Sc[Crf9 − (f1 + cf4)f10]−

Nt

Nb
f

′

8, (31)

Subject to the following conditions

f1(0) = 0, f2(0) = 1, f3(0) = S1, f4(0) = 0, f5(0) = c, f6(0) = S2, f7(0) = 1,

f8(0) = S3, f9(0) = 0, f10(0) = S4,
(32)

f2(∞) = 0, f4(∞) = 0, f6(∞) = 0, f8(∞) = 0, as η→ ∞ (33)

Now Runge Kutta Fehlberg (RKF45) for stepwise integration, a numerical technique
with shooting method is used, and MATLAB software is used for the computations.

3 Results and discussion

Figs. 2, 3, 4, and 5 show how the magnetic parameter affects velocity along the
x- and y-directions, temperature, and concentration. Here, we observed that the
temperature and concentration increased as they increased, but the velocity profile
decreased. It has been observed that a stronger magnetic field makes flow more
difficult. The momentum boundary layer thickness decreased as a result of the
change in velocity profile, as illustrated in Figs. 2 and 3.
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Figure 2: Behaviour of the magnetic parameterM on velocity along the x direction.

Figure 3: Behaviour of the magnetic parameterM on velocity along the y direction.

Figure 4: Behaviour of the magnetic parameter M on temperature.
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Figure 5: Behaviour of the magnetic parameter M on concenteration.

Figure 6: Behaviour of the Casson fluid parameter β on velocity along the x direc-
tion.

Figure 7: Behaviour of the Casson fluid parameter β on velocity along the y direc-
tion.
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Figure 8: Behaviour of the Casson fluid parameter β on temperature.

Figure 9: Behaviour of the Casson fluid parameter β on concenteration.

Figure 10: Behaviour of the permeability parameterK velocity along the x direction.
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Figure 11: Behaviour of the permeability parameterK velocity along the y direction.

Figure 12: Behaviour of the permeability parameter K on temperature.

Figure 13: Behaviour of the permeability parameter K on concentration.
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Figure 14: Behaviour of the Stretching sheet parameter c on velocity along the x
direction.

Figure 15: Behaviour of the Stretching sheet parameter c on velocity along the y
direction.

Figure 16: Behaviour of the Stretching sheet parameter c on temperature.
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Figure 17: Behaviour of the Stretching sheet parameter c on on concenteration.

Figure 18: Behaviour of the radiation parameter Ra on temperature.

Figure 19: Behaviour of the radiation parameter Ra on concenteration.
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Figure 20: Thermoplastics parameter Nt behavior with respect to temperature.

Figure 21: Behaviour of the thermophoresis parameter Nt on concentration.

Figure 22: Behaviour of the heat source/sink parameter δ on temperature.
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Figure 23: Behaviour of the heat source/sink parameter δ on concentration.

Figure 24: Behaviour of the chemical reaction Cr on temperature.

Figure 25: Behaviour of the chemical reaction Cr on concentration.
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Figure 26: Behaviour of the Prandtl number Pr on temperature.

Figure 27: Behaviour of the Brownian motion restriction Nb on concentration.

Figure 28: . Behaviour of the Schmidt number Sc on on concentration.
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Table 1: Impact of different non-dimensional controlling factors on friction factors
Cfx , Cfy , Nusselt number Nux and Sherwood number Sux .

Parameter Cfx Cfy Nux
Sux

M = −1 -2.005746 -2.544402 0.580582 0.801173
M = 0 -2.629326 -3.064782 0.500582 0.818533
M = 1 -3.140856 -3.51485 0.417652 0.848203
M = 2 -3.583068 -3.915582 0.326602 0.891835
K = −1 -2.334816 -2.815062 0.521082 0.823045
K = 0 -2.895696 -3.297062 0.451682 0.838045
K = 1 -3.368973 -3.720438 0.372052 0.869313
K = 2 -3.785391 -4.101684 0.275052 0.920523
β = 0.5 -3.140856 -3.51485 0.417652 0.848203
β = 1 -2.564498 -2.8698667 0.208992 0.958713
β = 1.5 -2.341055 -2.6198178 0.044302 1.066831
β = 2 -2.2209195 -2.485376 -0.1243 1.189151
c = 1.5 -3.140856 -3.51485 0.417652 0.848203
c = 2 -3.416166 -4.199868 0.931302 0.608003
c = 2.5 -3.738744 -4.9411452 1.375402 0.448203
c = 3 -4.097244 -5.717001 1.775402 0.338553

Table 2: Impact of different non-dimensional controlling factors on Nusselt number
Nux and Sherwood number Sux .

Parameter Nux
Sux

Pr = 2 0.417652 0.848203
Pr = 3 0.573052 0.740903
Pr = 4 0.703052 0.641503
Pr = 5 0.830052 0.537983

Cr = −0.5 0.510152 0.121503
Cr = 0 0.457652 0.556253
Cr = 0.5 0.417652 0.848203
Cr = 1 0.307652 1.307885
Sc = 0.5 0.417652 0.848203
Sc = 1 0.155712 1.617803
Sc = 1.5 -0.05071 2.188503
Sc = 2 -0.18071 2.632103

Ra = −0.98 9.510052 -8.020473
Ra = −0.5 0.915052 0.466403
Ra = 0 0.580052 0.735203
Ra = 0.5 0.417652 0.848203
δ = −1 1.658502 -0.259983
δ = 0 1.152222 0.197903
δ = 1 0.417652 0.848203
δ = 2 -1.75765 2.671003

Nb = −2.5 3.325092 1.469253
Nb = −1.5 1.957652 1.404003
Nb = −0.5 0.657652 1.183203
Nb = 0.5 0.417652 0.848203
Nt = −0.75 1.940152 3.092603
Nt = −0.5 1.007152 1.500203
Nt = 0 0.512552 0.920423
Nt = 0.5 0.417652 0.848203
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Higher values result in a larger Lorentz force in the magnetic field, which in-
creases the thickness of the thermal boundary layer. Evidently, the Lorentz force is
generated by a magnetic field with antagonistic/resistive strength. That causes the
fluid velocity to decrease and causes the flow boundary layer to narrow. Figs. 6, 10,
7, 11, 8, 9, and 12, 13 show how Casson fluid parameter and permeability param-
eter affect velocity along the x- and y-directions, temperature, and concentration.
Here, we observed that in figures 8, 9, and 12, 13, the temperature and concentra-
tion increased as they increased, but in figures 6, 10, and 7, 11 the velocity profile
decreased because the yield stress of the fluid is represented by the Casson fluid
parameter. The lowest tension that a fluid has to have in order to flow is known as
yield stress. With an increase in the Casson fluid parameter, the fluid yield stress
decreases and its viscosity increases. The velocity decreases more gradually as a
result. Figs. 14, 15, 16, and 17 show how the stretching sheet parameter affects
velocity along the x- and y-directions, temperature, and concentration. Here, we
observed that the velocity along the x- and y-directions, temperature, and concen-
tration increased as they increased. Figs. 18, 19, 20, 21, 22, and 23 shows how the
radiation parameter, thermophoresis parameter, and heat source/sink parameter
affect temperature and concentration. Here, we observed that the temperature and
concentration increased as increased, and a reverse effect is seen in Figs. 24 and
25 for chemical reactions. Fig. 26 shows how the Prandtl number affects tempera-
ture. Here, we observed that the temperature decreased as it increased.When heat
is transferred in relation to momentum, a higher Prandtl number denotes slower
heat transfer, and a lower Prandtl number implies faster heat transfer. A fluid
with a high Prandtl number often has a relatively short temperature gradient and
a smooth, well-mixed temperature profile. Figs. 27 and 28 show how the Brownian
motion parameter and Schmidt number affect concentration. Here, we observed
that concentration increased as the Brownian motion parameter increased, and a
reverse effect is seen in the Schmidt number.

4 Conclusions

This study investigated the effects of radiation and the Prandtl number on the three-
dimensional Casson fluid flow across a stretched surface when a magnetic field is
present with chemical reaction, and heat source/sink. Prior to being numerically
solved, this model is transformed and compressed into a dimensionless form. The
numerical data has been used to create graphs and tables that show the flow char-
acteristics.
The principal conclusions drawn from this study are:

• An increase in the magnetic field parameter, Casson fluid parameter, and
permeability parameter leads to a decrease in the velocity field in the x and
y directions and enhances the distribution of temperature and concentration.

• Increase in Stretching the sheet parameter increases the temperature, concen-
tration, and velocity field in the x and y directions.

• An increase in the radiation parameter, heat source/sink parameter, and ther-
mophoresis parameter increases temperature and concentration, and a reverse
effect is seen in the chemical reaction parameter.

• Increase in stretching sheet parameter decrease in temperature, concentration,
and velocity field in x and y directions.

• An increase in Prandtl number decreases the temperature.

• An increase in the Schmidt number decreases the concentration.
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• The Nusselt number and skin friction coefficient over x and y directions are
decreasing functions, while the Sherwood number is an increasing function of
the magnetic field parameter and radiation parameter.

• Sherwood number and skin friction coefficient over x and y directions are
increasing functions of the Casson fluid parameter, and Nusselt number is a
decreasing function, while the reverse effect is seen in the stretching sheet
parameter.

• The Nusselt number is an increasing function of the chemical reaction param-
eter, Schmidt number, radiation parameter, and heat source/sink parameters,
while the reverse effect is seen in the Sherwood number.

• The Nusselt number and the Sherwood number are both decreasing functions
of the Brownian motion parameter and the thermophoresis parameter.
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Abstract

Different biological models can be evaluated using mathematical models in
both qualitative and quantitative ways. A fractional bone mineralization
model involving Caputo’s fractional derivative is presented in this work. The
fractional mathematical model is beneficial because of its memory carrying
property. An appropriate fractional order of the derivative can be chosen
that is more closely related to experimental or actual data. The dynami-
cal system of equations for the process of bone mineralization is examined
qualitatively and quantitatively in this article. A numerical simulation has
been performed for the model. The model’s parameters have undergone
sensitivity analysis and their effects on the model variables have been ex-
plored. By studying the mineralization patterns in bone, different diseases
can be cured, and it can also be examined how the deviations from healthy
mineral distributions lead to specific bone diseases.

Keywords Bone mineralization, mineralization dynamics, Caputo frac-
tional derivative, critical points

2020 Mathematics subject classification:92-10, 34A34

1 Introduction

In the last decades fractional calculus had a remarkable journey in the field of sci-
ence, mathematics, and physics. Numerous fractional calculus applications include
biophysics, polymer material research, heat transmission in biological systems,
random walk problems, and chaotic systems description. (see, e.g [7, 8, 13, 21]).
Dynamics of some other models have also been studied like the Ebola virus model
[15], malaria transmission model [20], and tumour growth model[9, 19]. Some other
biological models and their mathematical analysis can be found in [16, 17, 18].
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2

The Riemann-Liouville fractional integral of order ϱ, 0 < ϱ ≤ 1 of the function
f ∈ L1[a, b] is defined as

Iϱxf(x) =
1

Γ(ϱ)

∫ x

0

(x− t)ϱ−1f(t)dt. (1)

Caputo fractional derivative, named after Michele Caputo, was first mentioned in
his research article [5] in 1967.

Definition 1.1 (Caputo Fractional Derivative). Suppose that ϱ > 0, a < x < b,
x ∈ R and f(x) ∈ ACn[a, b], the fractional operator

C
aD

ϱ
xf(x) =

1

Γ(n− ϱ)

∫ x

a

(x− t)n−ϱ−1f(n)(t)dt, n = [Re(ϱ)] + 1, (2)

is called the Caputo fractional derivative of order ϱ.

Equivalently, in the convolution form

C
aD

ϱ
xf(x) =

1

Γ(n− ϱ)
f(n)(x) ∗ (xn−ϱ−1), n = [Re(ϱ)] + 1, x ∈ (a, b). (3)

The Caputo derivative of the power function xn is given by

C
0D

ϱ
x(x

n) =
Γ(1 + n)

Γ(n+ 1− ϱ)
xn−ϱ. (4)

The composition of the Caputo fractional derivative and Riemann-Liouville frac-
tional integral gives the following results:(

C
0D

ϱ
x I

ϱ
xf
)
(x) = f(x), (5)(

Iϱx
C
0D

ϱ
xf
)
(x) = f(x)−

∑n−1
k=0 f

k(0+) (x−ϱ)k

k!
. (6)

We aim to study the dynamics of bone mineralization by fractionalising it in the
Caputo sense, followed by finding its solution and graphical analysis.

2 Bone mineralization

Bone is a multidimensional system that functions as a mechanical shield to pro-
vide support and security. The involvement of bone in haemostasis (cessation of
bleeding from a blood vessel) is also crucial. The process of developing inorganic
precipitation over an organic foundation is known as bone mineralization. Basi-
cally, it is a process of deposition of minerals on the bone matrix for the growth and
development of the bone [6]. Disease that can cause disorders of bone mineraliza-
tion in children includes rickets, renal disease, and tumour-induced osteomalacia.
The core idea of studying the mathematical model for bone mineralization is to
know more about how to solve this numerically in order to forecast the reaction
of the system, which could result in major clinical signs like bone abnormalities
and fractures. In this article, we have studied the mathematical model of the
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3

bone mineralization process, which is described in detail by Komarova [11] and
the references cited therein.
Attempts have been made to do quantitative formulation in terms of mathemat-
ical laws that relate the mineralization process with predefined parameters. Fur-
thermore, it is explained how this mineralization is measured together with the
mathematical formulation of the model and how this can be influenced by several
impacts. This helps us to deal with bone diseases and drug therapies. For a fruit-
ful interplay between theory and simulation, considerable efforts have been made
to make both outputs comparable. We validate the accuracy of model predictions
using bone diseases associated with dramatic changes in mineralization dynamics
due to key parameters.

2.1 Mathematical Model

An important and effective way to understand the biological problems is by estab-
lishing the mathematical models and analyzing their dynamical behaviors. Various
types of mathematical models of biological processes were discussed previously by
many authors (see, e.g. [4, 9, 10, 14]). In the present framework, we consider the
model for bone mineralization that was given by Komarova [11]. The following
system of equations describes the dynamics of bone mineralization:

dx1
dt

= −k1x1, (7)

dx2
dt

= k1x1, (8)

dI

dt
= v1x1 − r1x2I, (9)

dN

dt
= k2

dx2
dt

− r2
dy

dt
N, (10)

dy

dt
= k3

(
ρ

ρ+ Iσ

)
N. (11)

The notations and various terms of the equations used in the model are as follows:
x1: Concentration of naive collagen.
x2: Concentration of mature collagen.
I: Inhibitor of mineralization.
N: Number of the nucleators that help in the process of mineralization and act
on mature collagen.
y: Mineral
k1: It is the rate at which collagen cross-linking takes place and is inversely related
to time lag.
The relationships are defined by the equations (7) and (8), and the collagen ma-
trix is created from raw osteoblasts (bone-forming cells) that develop into fully
constructed collagen matrix (x2).
v1: It refers to the rate at which inhibitors permeate through immature collagen
and into the extracellular compartment close to the cells. It has an inverse rela-
tionship with time and directly influences the maximum value of I. As a result,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

291 Agarwal et al 289-310



4

Figure 1: Schematic representation of the model dynamics for bone mineralization.

the amount of inhibitor is proportional to the availability of naive or raw collagen,
as indicated by the term v1x1.
The idea is to stimulate the mature collagen because naive collagen can not be
mineralized. Inhibitor prevent the conversion of the naive collagen into mature
collagen.
r1: It is the rate by which the inhibitor removal or reduction takes place.
In equation (9), r1x2I represents reduction of inhibitors with rate constant r1 and
is induced by the involvement of mature collagen x2.
k2: The number of nucleators present in each mature collagen molecule.
Each collagen molecule has only one intrafibrillar nucleator when k2 = 1, although
interfibrillar nucleators behave similarly.
There is a mixture of intrafibrillar and interfibrillar nucleators when k2 ≥ 1. As a
result, the rate of nucleator appearance, which is proportional to matrix matura-

tion, is represented by k2
dx2
dt

.

r2: It is the rate by which mineral mask the nucleator. The number of nucleators
diminishes as the mineral covers them up when a certain nucleator starts the min-
eralization. The rate of decrease of nucleators in equation (10), is thought to be
proportional to both the concentration of nucleators present and the rate at which

mineralized crystals emerge i.e.
dy

dt
.

k3: The rate at which mineralization takes place.
From a physiological perspective, the process of forming bone tissues starts when
osteoblasts secrete an organic bone matrix made up of collagen. This raw collagen
matrix must be treated to accommodate mineralization once it is deposited into
the extracellular compartment; this process is known as matrix maturation.
This model and its simulations have been done by considering the following as-
sumptions:

1. Nucleators generated during collagen maturation are eliminated from the
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system in proportion to the rate of mineralization.

2. The model does not define the elaborate process of matrix maturation.

3. Different types of inhibitors are utilized, but they are treated as a single
entity.

4. Similarly, interfibrillar and intrafibrillar nucleators are not properly distin-
guished.

The analysis and observations of the model may help us to find the cure for
numerous bone-related diseases like Osteogenesis imperfecta (OI), which is usually
caused due to increased bone mineralization resulting in high bone fragility, low
bone mass, and brittleness of bones. Mathematically, it can be interpreted as
increase in mineralization degree and a decrease in mineralization lag time which
has been explained in later sections of this paper through graphical representation.
Osteomalacia and Osteoporosis are disease that are caused by to decrease in the
degree of bone mineralization and low mineral content respectively.

3 Fractional bone mineralization model

Recently, in the chapter [1], the authors have studied the qualitative analysis and
numerical simulation of the integer order model defined by (7)– (11).

Since the recent research involving the fractional-order derivatives has pro-
duced superior results in simulating real-world occurrences, we investigate the
process of bone mineralization using the Caputo fractional-order derivative. The
fractional-order derivative is the generalization of the integer-order derivative and
is capable of carrying the memory of the system. It is also helpful in the detection
of any lag in the process. Motivated by the work in the field of fractional modeling,
we moderate this dynamical system by substituting the time derivative with the
Caputo-fractional time derivative.
On fractionalizing the model (7)- (11) using the Caputo fractional derivative of
order 0 < α ≤ 1, we get

C
0D

α
t x1 = −kα1 x1, (12)

C
0D

α
t x2 = kα1 x1, (13)

C
0D

α
t I = vα1 x1 − r1

α x2I, (14)

C
0D

α
t N = k2 (C0D

α
t x2)− r2 (C0D

α
t y) N, (15)

C
0D

α
t y = kα3

(
ρ

ρ+ Iσ

)
N. (16)

The ordinary derivative has an inverse second dimension s−1 and the fractional
derivative has a dimension of s−α. For the non-dimensionlization, making the
substitutions

X1 =
x1
x̂1
, X2 =

x2
x̂2
, Y =

y

ŷ
, Ĩ =

I

x̂1
, Ñ =

N

x̂1
, rα1 x̂1 = r̂1, r2ŷ = r̂2, b̂ =

b

x̂1
a ,
kα3 x̂1
ŷ

=
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k̂3, k
α
1 = k̂1, v

α
1 = v̂1, x̂1 = x̂2 = 106molecules/µm3, ŷ1 = 109molecules/µm3 in

the system (12)-(16), it gets transformed into:

C
0D

α
t X1 = −k̂1X1, (17)

C
0D

α
t X2 = k̂1X1, (18)

C
0D

α
t Ĩ = v̂1X1 − r̂1X2Ĩ , (19)

C
0D

α
t Ñ = k2 (C0D

α
t X2)− r̂2 (C0D

α
t Y )Ñ , (20)

C
0D

α
t Y = k̂3

(
ρ̃

ρ̃+ Ĩσ

)
Ñ . (21)

For this fractional model, we perform the qualitative analysis i.e. the existence
and uniqueness of the solution of the defined coupled system is proved. The
model is simulated for observing the behavior of the variable under the impact of
fractional order derivative. A comparison with integer order derivative helps in
understanding the phenomenon in a better way. The sensitivity analysis for the
fractional model is done with respect to the parameters of the model.

4 Qualitative analysis of the model

In this section, the qualitative analysis of the model has been done. We shall first
prove the existence and uniqueness of the solution of the system (17)-(21). The
existence and uniqueness of the solution are the key ideas in the field of differential
equations as they ensure that a solution to the fractional order model exists and
can be found by one or the other method. It also guarantees that if the solution
exists, it is unique.

4.1 Existence and Uniqueness of Solution

If C(J) is the collection of continuous real-valued functions defined on the interval
J ⊂ R. Then V = C(J) ∗C(J) ∗C(J) ∗C(J) ∗C(J) is the Banach space with the
norm for (X1, X2, Ĩ , Ñ , Y ) ∈ V defined as ∥(X1, X2, Ĩ , Ñ , Y )∥ = ∥X1∥ + ∥X2∥ +
∥Ĩ∥ + ∥Ñ∥ + ∥Y ∥, where X1, X2, Ĩ , Ñ , Y ∈ C(J) and ∥ · ∥ = supt∈J | · |. With
the application of the fixed point theorem, we shall prove that the solution of the
system of differential equations (17)-(21) exists.
Applying the integral operator (5) upon the equation (17),

Iαt
C
0D

α
t X1 = Iαt (−k̂1X1), (22)

we obtain

X1(t)−X1(0) =
1

Γ(α)

∫ t

0

(t− τ)α−1(−k̂1X1(τ))dτ. (23)

Similarly,

X2(t)−X2(0) =
1

Γ(α)

∫ t

0

(t− τ)α−1(k̂1X1(τ))dτ, (24)
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Ĩ(t)− Ĩ(0) =
1

Γ(α)

∫ t

0

(t− τ)α−1(v̂1X1 − r̂1X2Ĩ)dτ, (25)

Ñ(t)− Ñ(0) =
1

Γ(α)

∫ t

0

(t− τ)α−1(k2k̂1X1 − r̂2 (C0D
α
t Y ) Ñ)dτ, (26)

Y (t)− Y (0) =
1

Γ(α)

∫ t

0

(t− τ)α−1

(
k̂3

(
ρ̃

ρ̃+ Ĩσ

)
Ñ

)
dτ. (27)

Denote,

K1 = −k̂1X1,

K2 = k̂1X1,

K3 = v̂1X1 − r̂1X2Ĩ ,

K4 = k2 (C0D
α
t X2)− r̂2 (C0D

α
t Y )Ñ ,

K5 = k̂3

(
ρ̃

ρ̃+ Ĩσ

)
Ñ .

(28)

The kernels Ki, i = 1, 2, 3, 4, 5 satisfy certain requirements, as stated in the fol-
lowing theorem [2].

Theorem 4.1. The Lipschitz condition and contraction would be satisfied by K1,
K2, K3, K4, K5, for the Lipschitz constants 0 ≤ k̂1 < 1, 0 ≤ r̂1c1 < 1, 0 ≤
2r̂2k2k̂3c1 < 1.

Proof. Let us start with K1. Let X1 and X
(1)
1 are two functions, then

∥K1(t,X1)−K1(t,X
(1)
1 )∥ = ∥ − k̂1X1 + k̂1X

(1)
1 ∥

= k̂1 ∥X1 −X
(1)
1 ∥.

(29)

Clearly, k̂1 is a fixed parameter and ∥X1∥ is a bounded function.
Hence the Lipschitz condition is satisfied for K1, and it is contraction mapping.
Similarly, the other four kernels also satisfy the Lipschitz condition, i.e.,

∥K2(t,X2)−K2(t,X
(1)
2 )∥ = k̂1∥X2 −X

(1)
2 ∥,

∥K3(t, Ĩ)−K3(t, Ĩ
(1))∥ = r̂1c1∥Ĩ − Ĩ(1)∥,

∥K4(t, Ñ)−K4(t, Ñ
(1))∥ = 2r̂2k2k̂3c1∥Ñ − Ñ (1)∥,

∥K5(t, Y )−K5(t, Y
(1))∥ = 0,

(30)

On using the above kernels from (28) in the equations (23) - (27), we get

X1(t) = X1(0) +

∫ t

0

K1(τ,X1(τ))dτ,

X2(t) = X2(0) +

∫ t

0

K2(τ,X2(τ))dτ,

Ĩ(t) = Ĩ(0) +

∫ t

0

K3(τ, Ĩ(τ))dτ,

Ñ(t) = Ñ(0) +

∫ t

0

K4(τ, Ñ(τ))dτ,

Y (t) = Y (0) +

∫ t

0

K5(τ, Y (τ))dτ.

(31)
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Corresponding recursive formulas are given by

X
(n)
1 (t) =

∫ t

0

K1(τ,X
(n−1)
1 (τ))dτ,

X
(n)
2 (t) =

∫ t

0

K2(τ,X
(n−1)
2 (τ))dτ,

Ĩ(n)(t) =

∫ t

0

K3(τ, Ĩ
(n−1)(τ))dτ,

Ñ (n)(t) =

∫ t

0

K4(τ, Ñ
(n−1)(τ))dτ,

Y (n)(t) =

∫ t

0

K5(τ, Y
(n−1)(τ))dτ.

(32)

The initial conditions are X
(0)
1 = X1(0), X

(0)
2 = X2(0), Ĩ

(0) = Ĩ(0), Ñ (0) = Ñ(0),
Y (0) = Y (0).

The following expressions represent respectively the difference of the terms in (32)
with their succeeding terms,

ψ1n(t) = X
(n)
1 (t)−X

(n−1)
1 (t)

=
1

Γ(α)

∫ t

0

(
K1(τ,X

(n−1)
1 (τ))−K1(τ,X

(n−2)
1 (τ))

)
(x− τ)α−1dτ,

(33)

ψ2n(t) = X
(n)
2 (t)−X

(n−1)
2 (t)

=
1

Γ(α)

∫ t

0

(
K2(τ,X

(n−1)
2 (τ))−K2(τ,X

(n−2)
2 (τ))

)
(x− τ)α−1dτ,

(34)

ψ3n(t) = Ĩ(n)(t)− Ĩ(n−1)(t)

=
1

Γ(α)

∫ t

0

(
K3(τ, Ĩ

(n−1)(τ))−K3(τ, Ĩ
(n−2)(τ))

)
(x− τ)α−1dτ,

(35)

ψ4n(t) = Ñ (n)(t)− Ñ (n−1)(t)

=
1

Γ(α)

∫ t

0

(
K4(τ, Ñ

(n−1)(τ))−K4(τ, Ñ
(n−2)(τ))

)
(x− τ)α−1dτ,

(36)

ψ5n(t) = Y (n)(t)− Y (n−1)(t)

=
1

Γ(α)

∫ t

0

(
K5(τ, Y

(n−1)(τ))−K5(τ, Y
(n−2)(τ))

)
(x− τ)α−1dτ.

(37)

Now, on taking norm of (33),

ψ1n(t)| =
∥∥∥X(n)

1 (t)−X
(n−1)
1 (t)

∥∥∥
= ∥ 1

Γ(α)

∫ t

0

(
K1(τ,X

(n−1)
1 (τ))−K1(τ,X

(n−2)
1 (τ))

)
dτ∥

≤
∫ t

0

∥
(
K1(τ,X

(n−1)
1 (τ))−K1(τ,X

(n−2)
1 (τ))

)
∥dτ.

(38)
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As the kernel K1 fulfill the Lipschitz condition, we have

∥X(n)
1 (t)−X

(n−1)
1 (t)∥ ≤ k̂1

∫ t

0

∥X(n−1)
1 (t)−X

(n−2)
1 (t)∥dτ, (39)

and hence,

∥ψ1n(t)∥ ≤ γ1

∫ t

0

∥ψ1(n−1)(t)(τ)∥dτ. (40)

Similarly,

∥ψ2n(t)∥ ≤ γ2

∫ t

0

∥ψ2(n−1)(τ)∥dτ, (41)

∥ψ3n(t)∥ ≤ γ3

∫ t

0

∥ψ3(n−1)(τ)∥dτ, (42)

∥ψ4n(t)∥ ≤ γ4

∫ t

0

∥ψ4(n−1)(τ)∥dτ, (43)

∥ψ5n(t)∥ ≤ γ5

∫ t

0

∥ψ5(n−1)(τ)∥dτ, (44)

where, γ1 = γ2 = k̂1, γ3 = r̂1c1, γ4 = 2r̂2k2k̂3c1, γ5 = 0.
Hence,

X
(n)
1 (t) =

n∑
i=0

ψ1n(t), (45)

X
(n)
2 (t) =

n∑
i=0

ψ2n(t), (46)

Ĩ(n)(t) =
n∑

i=0

ψ3n(t), (47)

Ñ (n)(t) =
n∑

i=0

ψ4n(t), (48)

Y (n)(t) =
n∑

i=0

ψ5n(t). (49)

In the following theorem we prove the existence and uniqueness of the solution
[12].

Theorem 4.2. The system of fractional bone mineralization model has an ex-

act coupled solution under the condition that we can find t1 such that
k̂1t1
Γ(α)

≤

1,
r̂1c1t1
Γ(α)

≤ 1,
r̂2k̂3t

Γ(α)
≤ 1 and also the solution is unique.
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Proof. The functions X1(t), X2(t), Ĩ(t), Ñ(t), and Y (t) are bounded and the
Lipschitz condition is satisfied by the kernels Ki, i = 1, 2, 3, 4, 5,

X1(t)−X1(0) = X
(n)
1 (t)−H(n)

1 (t),

X2(t)−X2(0) = X
(n)
2 (t)−H(n)

2 (t),

Ĩ(t)− Ĩ(0) = Ĩ(n)(t)−H(n)
3 (t),

Ñ(t)− Ñ(0) = Ñ (n)(t)−H(n)
4 (t),

Y (t)− Y (0) = Y (n)(t)−H(n)
5 (t).

(50)

Now,

H(n)
1 (t) = X

(n)
1 (t)−X1(t) +X1(0)

=⇒ ∥H(n)
1 (t)∥ =

∥∥∥∥ 1

Γ(α)

∫ t

0

K1(τ,X
(n−1)
1 (τ))dτ −X1(t) +X1(0)

∥∥∥∥
=

1

Γ(α)

∥∥∥∥∫ t

0

K1(τ,X
(n−1)
1 (τ))dτ +X1(0)−X1(0)−

∫ t

0

K1(τ,X1(τ))dτ

∥∥∥∥
=

1

Γ(α)

∫ t

0

∥(K1(τ,X
(n−1)
1 (τ))−K1(τ,X1(τ)))∥dτ

≤ k̂1
Γ(α)

∥(X(n−1)
1 −X1)∥

∫ t

0

dτ

≤ k̂1
Γ(α)

∥X(n−1)
1 −X1∥t.

(51)

On repeated use of above process, we get

∥H(n)
1 (t)∥ ≤ (k̂1)

n+1

(
t

Γ(α)

)n+1

λ. (52)

Thus, ∃ t1 such that

∥H(n)
1 (t)∥ ≤ (k̂1)

n+1

(
t1

Γ(α)

)n+1

λ. (53)

Taking the limit n→ ∞ , since, 0 ≤ k̂1t < 1 ,

∥H(n)
1 (t)∥ → 0. =⇒ X1(t)−X1(0) = lim

n→∞
X

(n)
1 (t) (54)

Similarly,

∥H(n)
2 (t)∥ ≤ k̂1t

Γ(α)
∥X(n−1)

2 −X2∥

∥H(n)
3 (t)∥ ≤ r̂1c1t

Γ(α)
∥Ĩ(n−1) − Ĩ∥

∥H(n)
4 (t)∥ ≤ r̂2k̂3t

Γ(α)
∥Ñ (n−1) − Ñ∥

∥H(n)
5 (t)∥ = 0,

(55)
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and hence, we have

∥H(n)
2 (t)∥ → 0. =⇒ X2(t)−X2(0) = lim

n→∞
X

(n)
2 (t),

∥H(n)
3 (t)∥ → 0. =⇒ Ĩ(t)− Ĩ(0) = lim

n→∞
Ĩ(n)(t),

∥H(n)
4 (t)∥ → 0. =⇒ Ñ(t)− Ñ(0) = lim

n→∞
Ñ (n)(t),

∥H(n)
5 (t)∥ → 0. =⇒ Y (t)− Y (0) = lim

n→∞
Y (n)(t).

(56)

This proves that the solution to the given system exists.

To prove that the solution is unique, let us assume that X ′
1, X

′
2, Ĩ

′, Ñ ′, Y ′ be
another set of solutions of the system (7)-(11). Then from (32)

X1(t)−X ′
1(t) =

∫ t

0

(K1(τ,X1)−K1(τ,X
′
1))dτ

=⇒ ∥X1(t)−X ′
1(t)∥ ≤ k̂1t∥X1(t)−X ′

1(t)∥
=⇒ ∥X1(t)−X ′

1(t)∥ = 0 since k̂1t < 1

=⇒ X1(t) = X ′
1(t).

(57)

Uniqueness can be proved for the other variablesX2, Ĩ , Ñ , Y in the similar way.

4.2 Stability Analysis

Since the system of equations is a model of the physical behavior of the simula-
tion’s objects, the stability of the system of differential equations is defined as the
physical stability of the system. In the model (17) − (21), defining the functions
as follows

f1 = −k̂1X1, (58)

f2 = k̂1X1, (59)

f3 = v̂1X1 − r̂1X2Ĩ , (60)

f4 = k2

(
C
0D

α
t

)
X2 − r̂2

(
C
0D

α
t

)
Y Ñ, (61)

f5 = k̂3

(
ρ̃

ρ̃+ Ĩσ

)
Ñ . (62)

The critical points will be obtained for fi=0, i = 1, 2, 3, 4, 5.

f1 = −k̂1X1 = 0 =⇒ X1 = 0

Since, X1 +X2 = K, we have X2 = K. Now,

f3 = v̂1X1 − r̂1X2Ĩ = 0 =⇒ v̂1X1 − r̂1KĨ = 0 =⇒ Ĩ = 0.

Also,

f5 = k̂3

(
ρ̃

ρ̃+ Ĩσ

)
Ñ = 0 =⇒ Ñ = 0.
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f4 = k2k̂1X1 − r̂2 (C0D
α
t Y )Ñ = 0 =⇒ r̂2 (C0D

α
t Y )Ñ = 0.

C
0D

α
t Y may or may not be zero. Hence, the system has infinitely many critical

points (X1, X2, Ĩ , Ñ , Y ) = (0, K, 0, 0, Y ).
Now, we will check whether the given system is stable or unstable at the critical
points. So, for this, we will find the Jacobian matrix.
The general form of the Jacobian matrix for the given system of bone mineraliza-
tion will be:

J =
∂(f1, f2, f3, f4, f5)

∂(X1, X2, Ĩ , Ñ , Y )
=



∂f1
∂X1

∂f1
∂X2

∂f1

∂Ĩ

∂f1

∂Ñ

∂f1
∂Y

∂f2
∂X1

∂f2
∂X2

∂f2

∂Ĩ

∂f2

∂Ñ

∂f2
∂Y

∂f3
∂X1

∂f3
∂X2

∂f3

∂Ĩ

∂f3

∂Ñ

∂f3
∂Y

∂f4
∂X1

∂f4
∂X2

∂f4

∂Ĩ

∂f4

∂Ñ

∂f4
∂Y

∂f5
∂X1

∂f5
∂X2

∂f5

∂Ĩ

∂f5

∂Ñ

∂f5
∂Y


. (63)

Substituting for fi, i = 1, 2, 3, 4, 5 in the matrix, we get the following Jacobian
Matrix: 

−k̂1 0 0 0 0

k̂1 0 0 0 0

v̂1 −r̂1Ĩ 0 0 0

k̂1k2 0 0 0 0

0 0 0
k̂3ρ̃

ρ̃+ Ĩσ
0


. (64)

The eigen values corresponding to above matrix are 0, 0, 0,−k̂1,−k̂1r̂1. Observing
the eigenvalues, we can conclude that the system is marginally stable at the critical
points (0, K, 0, 0, Y ), which occur after a short span of time period just after the
start of the mineralization process. Thus, the mineralization will not suddenly
explode and the system will always have bounded solution but no steady state
output.

5 Simulation and discussion

The numerical simulation has been done using the Lagrange’s two-step method .
Applying Lagrange’s two-step method for the Caputo fractional derivative [3, Eq.
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2.89], we get the following numerical scheme for (23).

X1(n+ 1) = X1(1) +
hα

Γ(α + 2)

×

(
n∑

k=2

[(n− k + 1)α(n− k + 2 + α)− (n− k)α(n− k + 2 + 2α)] f (t(k), X1(k))

−
n∑

k=2

[
(n− k + 1)α+1 − (n− k)α(n− k + 1 + α)

]
f(t(k − 1), X1(k − 1))

)
(65)

Similarly, expression for other variables X2, Ĩ , Ñ , Y can be obtained.
The values of the parameters are mentioned in Table 1 as provided in [11] and are
used for the purpose of simulation. These values are relevant to the mineralization
process in human bone and also agree with the theoretical analysis of human
disorders of bone mineralization.

Table 1: Model parameters

Parameter Description Value
k1 Collagen cross-linking rate 0.1/ day
k2 Nucleator count per collagen molecule 1
k3 rate of mineral formation of mineral 1000/day
r1 rate of inhibitors degradation 2× 10−7/day
v1 rate of production of inhibitors by osteoblasts 0.1 per day
r2 nucleators covered by mineral 1.7× 10−8/mol
σ Hill coefficient 10
ρ Hill function parameter 1057

The plots are created for different values of the order α of the Caputo fractional
operator. In Figure 2, it is observed that raw collagen, which initially constituted
100 percent of the total collagen in the system, decreases with the passage of time
as it gets converted into mature collagen. The figure explores the temporal change
of concentration of raw collagen for different values of α and shows a similar pat-
tern with integer order suggesting that the fractional order model is well-posed,
effective, and precise.

Figure 3 explores the temporal change of mature collagen for different values of
α. which leads to 70− 80 percent conversion in 20 days and complete maturation
in 45 − 60 days. Figure 4 depicts the impact of inhibitors for different values of
α. Inhibitors were initially present in raw collagen frameworks for 10 days before
being rapidly destroyed with the development of mature collagen.
Figure 5 depicts the impact of nucleators for different values of α with respect
to time. As the process gets started and paces up nucleator distribution into the
system is sluggish. Figure 6 depicts the impact of mineralization for different
values of α and graph also shows the lag time which is required for mineralization
which is approximately 10 days and mineralization then gradually increases with
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Figure 2: Variation in raw collagen with time for different value of α =
0.85, 0.90, 0.95, 1.

Figure 3: Variation in mature collagen with time for different values of α =
0.85, 0.90, 0.95, 1.
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Figure 4: Variation in inhibitors with time for different value of α =
0.85, 0.90, 0.95, 1.

Figure 5: Variation in the nucleator quantity with time for different value of
α = 0.85, 0.90, 0.95, 1.

time. The normalized mineralization degree of 1 is attained in 100 days after the
deposition of raw collagen takes place.
The graphs plotted provide the variation in the values of the variable when the
values of α are changed. The value of the order α of fractional derivative can be
chosen to fit the experimental data, if available.
Mineralization lag time is the amount of time required to start the mineralization
process. In a healthy human bone, it takes approximately 10 days. After the
lag was completed mineralization began quickly, followed by a steady decline in
mineral formation whereas, the mineralization degree is the greatest amount of
mineralization that may occur. The normalized mineralization degree of 1 (i.e.,
full mineralization) was obtained 100 days after the deposition of raw collagen. It
is further observed from Figure 6 that, the fractional model can help in detecting
any anomaly in mineralization at an early stage compared to the integer order
model.
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Figure 6: Variation in the quantity of the mineral with time for different value of
α = 0.85, 0.90, 0.95, 1.

Figure 7: Impact of parameter k1(collagen cross-linking rate) on raw collagen for
fractional order α = 0.95.

5.1 Sensitivity Analysis

Parameters play a vital role in the dynamics of any system. Here, the impact of
the various parameters k1, k2, v1, r1, r2 has been studied on the model variables.

In figure 7, sensitivity with respect to parameter k1 has been explored which
concludes that as the rate k1 increases (i.e. collagen cross-linking rate) raw collagen
takes less number of days to transform into mature collagen. Here, precisely the
effect is observed by increasing the rate to threefold.
Figure 8 provides a visual representation of how the parameter k1 impacts the
dynamic of mature collagen. So, we find that for different values of k1 mature
collagen reach equilibrium at a different level, and in general the number of mature
collagen increases with time, and at a certain time, it reaches equilibrium, With
the increase in the value of k1, the rate of formation of mature collagen increases.
Figure 9 explores the impact of parameter v1 on inhibitors. It highlights that as
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Figure 8: Impact of parameter k1 (collagen cross-linking rate) on mature collagen
for fractional order α = 0.95.

Figure 9: Impact of parameter v1( rate at which inhibitors diffuse) on inhibitor
for fractional order α = 0.95.
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Figure 10: Impact of parameter r1(rate of inhibitor removal) on inhibitor for
fractional order α = 0.95.

Figure 11: Impact of parameter k2 on nucleators for fractional order α = 0.95.

the parameter v1 rises, more inhibitors will begin to diffuse into raw collagen. It
is observable that there is a direct relationship between v1 and inhibitor supply.
There is a drastic increase in the concentration of active inhibitors for v1 = 1.0 .
Figure 10 explores the impact of parameter r1 on inhibitors. It depicts that the
inhibitor’s concentration drops as the parameter r1 increases because r1 is the rate
of removal of inhibitors and hence deterioration takes place largely.
Figure 11 explores the impact of parameter k2 on nucleators. The nucleation
process accelerates as the number of nucleators per mature collagen increases.
Figure 12 explores the impact of parameter r2 on the nucleators. The number
of nucleators grows as r2 increases. As we increase the rate of r2 three times we
observe that the number of nucleators begins to diminish as they are masked by
minerals.
Figure 13 explores the impact of parameter k3 on mineralization. Mineralization
is strongly linked to the parameter k3; as the rate k3 rises, so does mineralization.
Changes in k3 had a predictable effect on the pace of mineral production, but they
also had a dramatic and proportionate effect on the degree of mineralization. A

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

306 Agarwal et al 289-310



19

Figure 12: Impact of parameter r2 on nucleators for fractional order α = 0.95.

Figure 13: Impact of parameter k3 on mineralization for fractional order α = 0.95.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

307 Agarwal et al 289-310



20

threefold drop in the rate of mineral formation k3 resulted in a threefold decrease
in mineralization degree.
The impact of all the parameters have been tested with raw collagen, mature col-
lagen, inhibitors, nucleators, and mineralization but it is found that k1 is the key
parameter for raw and mature collagen whereas v1 and r1 are the key parameter
for inhibitors k2 and r2 for nucleators and k3 for mineralization respectively. Thus,
it can be winded up with a graphical representation in the context of these param-
eters only. The CPU time taken for the computation in the code varies depending
on the specific hardware and processing capabilities of the machine running the
MATLAB code. The computation for the solution of this dynamical system took
1.9034 seconds of CPU time.

6 Conclusion

In this work, bone mineralization is studied with mathematical and numerical
tools by considering bone at the micrometer level and thus provides vital support
for the interpretation of experimental results. Furthermore, fixed point theory
has been used to demonstrate the existence of a unique solution to the model.
Also, the efficiency of the proposed scheme is drowned in terms of numerical
simulations which are shown in graphs and it is clear that the proposed method
is very accurate. Sensitivity analysis shows how the stiffness of bone depends on
the inhibitor, nucleator, or raw or mature collagen and also to what extent bone
does not get deformed under load. The use of fractional calculus helps in the early
detection of any unusual patterns in the mineralization process. We can use this
model to investigate more bone-related diseases by considering more assumptions.
The obtained results will be useful for orthopedists to have a rough guess of the
days needed for the mineralization of bone. Also, this model can be helpful for
studying bone mineralization in other species too. A further important application
is the study of how pharmaceutical therapies interfere with bone mineralization.
The model can be modified to investigate the mineralization of additional calcified
tissues, including the enamel, cementum, and dentin of teeth, etc.
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Abstract

The present study focuses on the MHD Radiative Casson fluid flow with
the effect of triple diffusivity over a vertical porous wall along with convec-
tive boundary conditions. The governing equations for detecting the nature
of the fluid under the influence of solutal diffusivity and thermal conductivity
in triple diffusive boundary layer flow are derived. Non-linear partial differ-
ential equations are reduced to ordinary differential equations via similarity
transformation. The BVP4C method in MATLAB software is then used to
solve them. The outcomes of several physical dimensionless parameters like
permeability, convective parameter, buoyancy ratio parameter, Casson param-
eter and chemical reaction parameter with source/sink impacts established by
graphics. Also, the impression of the local skin friction coefficient, Nusselt
number, and local Sherwood number are presented through the tables.
Key words: MHD; Vertical wall; Casson fluid; Mixed Convection; Buoyancy;
Triple diffusive; Brownian motion.

Table 1: Symbols List:
B0 Magnetic induction π deformation rate Multiple factors
Sc1 Schmidt parameter for concentration profile 1 πc Critical value of πfounded on non-Newtonian model
Sc2 Schmidt parameter for concentration profile 2 eij (i, j)th deformation rate factor
Cn Concentration profile n,(n=1,2) Nr Radiation parameter
Cn∞ Ambient concentration n,(n=1,2) as y tends to infinity Ec Eckert number
Cnw reference concentration profile n,(n=1,2) M Magnetic field parameter
Cp Specific heat capacity Pr Prandtl number
DB1 Brownian diffusion coefficient for concentration profile 1 Rex Local Reynolds number
DB2 Brownian diffusion coefficient for concentration profile 2 GT local temperature Grashof number
Dm Mass diffusivity GC1 local Grashof number for concentration profile 1
K parameter of Porous media GC2 local Grashof number for concentration profile 2
k the porous medium Permeability R0 Chemical reaction coefficient
Shx1 Local Sherwood number for concentration profile 1 R1 Chemical reaction parameter for concentration profile 1
Shx2 Local Sherwood number for concentration profile 2 R2 Chemical reaction parameter for concentration profile 2
n viscosity factor (Constant) T Temperature of the nanofluid within the boundary layer
Q0 The heat Source/sink coefficient(dimensional) TW Reference temperature
q Radiative heat flux T∞ Ambient fluid Temperature
N1 The Buoyancy force parameter for concentration profile 2 Tf constant fluid temperature
N2 The Buoyancy force parameter for concentration profile 2 Nux Local Nusselt number
Cfx The Skin friction coefficient hf variable heat transfer
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Greek Symbols u, v components of Velocity along x- and y- directions, respectively
θ Dimensionless temperature uw Reference velocity
ϕn Dimensionless concentration(n-1,2) x.y Cartesian coordinates along and normal to the plate, respectively
ν viscosity Kinematic coefficient
α Thermal Diffusivity Subscripts
β parameter of Casson Fluid w Surface conditions
σ The electrical conductivity ∞ Conditions far away from the surfaces
λ The heat source/sink parameter
λ1 Mixed convection parameter
η Similarity variable
τ Heat capacity ratio Superscripts
τw wall shear stress of the fluid ′ Differentiation with respect to η
µB Non-Newtonian plastic dynamic viscosity

1 Introduction

The non-Newtonian fluid is an essential part of our daily lives and is utilized in
various applications. These fluids are used as drag-reducing agents, in printing
technology, and as damping and braking devices. They are also used in personal
protective equipment and food products. These versatile fluids have many uses and
are an essential part of modern technology. In the Engineering sector, Industries
and the Research area use different applications for studying mass and heat transfer
known in various theoretical and practical aspects. Triple diffusive magnetohydro-
dynamic (MHD) fluid flow involves the study of fluid motion that includes three
distinct types of diffusion processes: thermal diffusion, mass diffusion, and mag-
netic diffusion. This type of flow is encountered in various physical systems and
finds applications in astrophysics, geophysics, and engineering. In the case of the
study of anomalies in fatty acid, uses of convection of triple diffusive observed in the
modelling of medical airing tools, triglycerides and surrounding several components
such as saturated fat (high-density lipoproteins, low-density-Cholesterol lipopro-
teins), which hold different diffusivities. Many industries, technical applications
and different sectors depend on MHD fluxes and MHD generators. Devi, & Devi,
(2) conducted a numerical parametric study to compare the heat transfer character-
istics of nano-fluid and hybrid nano-fluid. Through these observations, they found
that the rate of heat transfer of hybrid nano-fluid (Cu–Al2O3/water) is higher than
that of nano-fluid (Cu/water) when a magnetic field is present. Gireesha, B.J. et al.
(4) studied heat and mass transfer in a three-dimensional, double-diffusive, hydro-
magnetic boundary layer flow of an electrically conducted Casson nano-fluid over
a stretched surface. The researchers conducted this study to take into account a
variety of factors to define convective boundaries, including unsynchronized thermal
radiation, electromagnetic fields, buoyancy forces, thermophoresis, and Brownian
motion. Hayat, T. et al. (7) explained the study of the effects of Soret and Dufour
on the magnetohydrodynamic three-dimensional 3D flow of second-grade fluid in the
existence of heat radiation and effects from Soret and Dufour. The second-grade
fluid is taken to be electrically conductive by means of a uniform magnetic field. Isa,
et al.(9) illustrated how the exponentially permeable fabric affects the Mixed con-
vection magnetohydrodynamic (MHD) boundary layer flow for Casson fluid. Jena,
S. et al.(13) noticed the MHD viscoelastic fluid flow subject to variable magnetic
field implanted in a porous medium in the existence of chemical reaction and heat
source or sink with soret and Dofour effect over a porous vertical stretching sheet.
Patil, et al.(25) investigated numerically on steady boundary layer flow with triple
diffusive and mixed convection past a vertical plate moving corresponding to the
free stream in the upward direction. Patil, et al.(25) considered solutal components
like sodium chloride and sucrose which are added to the flow stream from below
with various concentration levels and investigated the thermal and species concen-
tration fields. Raghunatha, et al.(27) investigated the weakly non-linear constancy
of the convection of triple diffusive in a Maxwell fluid-saturated porous layer and
found that depending on the alternative of the physical parameters the bifurcating
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oscillatory solution is either supercritical or subcritical. In terms of time and area-
averaged Nusselt numbers Heat and mass transfers are predictable. Manjappa, et
al. (21) examined the impact of non-linear triple diffusive thermal radiation on the
convective boundary layer flow of Casson nano-fluid along a flat plate. The free con-
vection of triple diffusive in triangular, square and trapezoidal permeable chambers
under an effect of interior volumetric heat production was examined by Khan, et
al.(14). Here the chambers with the peak surface and pedestal surfaces are supposed
to be adiabatic and impenetrable. Khan, et al.(15) analyzed the entropy for triple
diffusive flow and due to various effects, they found that as compared to opposing
flows the assisting flows entropy generation rates are higher. Simultaneously, these
entropy generation rates are reduced with some other effect. Lund, et al.(19) exam-
ined numerically a study of magnetohydrodynamic (MHD) micro polar fluid flow
in the presence of joule heating effect and viscous dissipation effects on a shrinking
surface. Nawaz, and Awais, (23) discussed double diffusion of nanoparticles and
solute presuming using adapting finite element method for the numerical effects of
diffusion thermo and thermal diffusion. Rao, et al.(29) analyzed Dufour and ther-
mophoresis effects in magnetohydrodynamic (MHD) three-dimensional fluid motion
of Newtonian and non-Newtonian and calculated the mass & heat transfer above a
stretching surface with Brownian motion. Umavathi, et al.(34) explored that when
heat is exchanged from the external fluid with the plates, the flow does not de-
pend on time on triple diffusive convection in a vertical channel. Farooq, et al.(3)
experimented with the essential quantities modified in the streamwise direction in
the Darcy-Forchheimer-Brinkman framework. Therefore, in non-Darcy porous me-
dia, the Casson nano-fluid steady flow over a flat plate is installed and developed
non-similar boundary layer model for forced convection. Parvin, et al.(24) studied
the numerical solutions of magnetohydrodynamics (MHD) casson fluid flow which
considers the temperature and concentration gradients. Calculated the effects of
nondimensional parameters on velocity, temperature and concentration profile via
graph. Ramesh, K. et al.(28) discussed the essential flows of a Casson fluid in flat
parallel plates and considered three primary situations such as the plate walls pro-
gressing in contradictory directions, the growth of inferior plate in the flow direction
and others in a rigid location, the growth of the plates in the flow direction respec-
tively. It was quite interesting to study the behaviour of the fluid in these different
scenarios. Shaheen, N. et al.(31) analyzed electrically conducting two-dimensional
radiative casson nanofluid flow through a deformable cylinder fixed in a porous
medium with the impact of unpredictable characteristics compound with chemical
reaction and Arrhenius activation energy. Shankar, S. et al.(32) studied the Casson
fluid numerically with MHD through a vertical permeable wall with impacts of triple
diffusive on a viscous flow with mixed convection. The fluids nature is examined
by the triple diffusive boundary layer stream under the pressure of solutal diffusiv-
ity and thermal conductivity. Abbas, N. et al.(1) analyzed unsteady compressible
Casson hybrid nanofluid flow over an erect stretching sheet with a stagnation point.
Also studied the nonlinear radiation impact in this manner. Gnanaprasanna, K.
and Singh, A. K.(5) explained that nanofluid with more shear thinning effects and
rheological properties with variable viscosity on a vertical plate using the Prandtl
number numerically. Hameed, N. et al.(6) examined the two-dimensional flow of
Casson hybrid nanofluid flow on a non-linear extending surface using absorption
and heat generation, Magnetic field and viscous dissipation. Irfan, and Khan,(8)
examined the two-dimensional magnetohydrodynamic (MHD) casson fluid flow with
shear thickening properties for a vertical stretching sheet in the presence of variable
heat source and heat transfer characteristics. This paper also considers the velocity
slip conditions and the effect of thermal radiation. Jain et al.(10) studied MHD lam-
inar flow with heat, mass, magnetic flux, buoyancy ratio, thermal conduction, radi-
ation, and convective boundary conditions for an electromagnetic fluid. Khashi’ie,
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et al.(16) examined how viscous dissipation and MHD affect the transfer of heat
radiative of fluid flow of Reiner-Philippoff across a nonlinearly contracting sheet.
Lanjwani, et al.(18) studied the two-dimensional steady boundary layer flow, heat
transfer, and mass transfer properties of micropolar nanofluids over surfaces that
are exponentially expanding and contracting. Mehta et al.(22) studied the magne-
tohydrodynamics of a convective stagnation point flow with a vertical sheet embed-
ded in a permeable medium. The effects of heat generation/absorption, radiation,
and viscous dissipation were all taken into account. Prasad, et al.(26) illustrated
the flow of nano-convective magnetohydrodynamic radiation over a cone. Xia, et
al. (35) examined the flow of a micropolar hybrid nano-fluid in a 3D nonlinear
mixed convective boundary layer under multiple slip conditions and microorganism
presence across the thin surface.Jain et al.(11) conducted a study on the spinning
fluid flow that occurs when a disk revolves with an inverse linear angular velocity
in a magnetic unsteady Brownian motion of viscous nanofluids. Jangid et al.(12)
modelled heat and mass transfer in fluid sheets of varying thickness, and stagnant
sheets considering heat source/sink, permeability, magnetic fields, radiation, Joule
heating, buoyancy force and chemical reactions.The belongings of radiation and ve-
locity slip on MHD stream and melting warmth transmission of a micropolar liquid
over an exponentially stretched sheet which is fixed in a porous medium with heat
source/sink are accessibled by Kumar et al.(17) Makkar, et al. (20) experimented
in the presence of convective conditions and gyrotactic microorganisms with MHD
Casson fluid flow and calculated the influence of different fundamental fluid param-
eters. Reddy, et al. (32) analyzed the MHD casson nanofluid on variable radiative
flow with a joule heating effect on a stretching sheet. Sneha, et al.(33) explained
two-dimensional MHD incompressible flow which does not depend on time and in
this term also calculated the heat transfer of the flow. In the fluid, nanoparticles
were added to improve thermal efficiency and also applied a strong transverse mag-
netic field. As per the authors’ conclusion and some research on triple diffusive
Casson fluid flow with MHD and convective boundary conditions. Here the motive
of this research is to find out the triple diffusive Casson fluid flow with MHD in
the existence of radiation and chemical reaction parameters. These studies can also
help in developing more accurate and predictive models for various scientific and en-
gineering applications, contributing to advancements in multiple fields. This study
helps to find Triple MHD Casson fluid flow with Radiation, source/sink parameter
and chemical reaction impacts over a vertical wall with convective boundary con-
ditions. It helps to develop new technologies and experiments. It also has further
applications in the fields of security, medicine, engineering, bioscience and industri-
alized methods such as the refining of waste from plastic, the oil recovery process,
polymer extrusion and transpiration cooling process and many more.

2 Problem Structure:

In a two-dimensional MHD Casson mixed convective fluid flow with radiation and
joule heating effect, considered temperature T∞ and free stream velocity U∞ which
is constant over a static porous plane surface. To solve the geometry problem, take
the x-axis upwards along with the vertical plate, and the y-axis taken perpendicular
to it. Also, consider the velocity components u and v to determine the solution to
this problem accurately. [Figure1].
In the solution of two distinguished elements Sn (n=1,2) with concentration, Cn

(n=1,2) is assumed. A constant fluid temperature Tf is maintained by the left side
of the plate which gives a variable heat transfer hf . Here ( Tf > T∞ ) shows the
supplementary flow corresponds to the shield being heated by the liquid, and ( Tf <
T∞ ) shows the opposing flow corresponds to the shield being cooled by the fluid.

4

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

314 Atiya Ali et al 311-325



Figure 1: Physical Diagram

The buoyancy approximation is factored in and integrated with the flow region. On
the surface, a moving magnetic field B0(x) is forced. The imposed magnetic field
can’t be compared to the induced one due to the low magnetic Reynolds number.
Above all preliminaries, The fundamental governing PDE’s equations are:

∂u

∂x
+
∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂v

∂y
=ν(1 +

1

β
)
∂2u

∂y2
− σB2(x)u

ρ
+ g0[βT (T − T∞)

+ βC1(C1 − C1∞) + βC1(C2 − C2∞)]

(2)

u
∂T

∂x
+ v

∂T

∂y
=α

∂2T

∂y2
+
Q0

ρcp
(T − T∞)− 1

ρcp

∂qr
∂y (3)

u
∂C1

∂x
+ v

∂C

∂y
= DB1

∂2C

∂y2
−R1(C1 − C1∞)

(4)

u
∂C1

∂x
+ v

∂C

∂y
= DB2

∂2C

∂y2
−R2(C2 − C2∞)

(5)

The suitable Boundary conditions are:{
u = 0, v = Vw(x), C1 = C1w, C2 = C2w,−K ∂T

∂y = hf (Tf − Tw) at y = 0

u→ U∞, v → 0, T → T∞, C1 → C1∞, C2 → C2∞ at y → ∞
(6)

Where, Vw(x) < 0 and Vw(x) > 0 represent suction and injection, respectively.

τij =

{
2(µB +

τy√
2π

)eij if π > πc
2(µB +

τy√
2π

)eij if π < πc
(7)

where τij is known as share stress and the yield stress of non-Newtonian fluid is
represented by τy π = eijeij
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Using transformation Similarity in classify to express PDE’s(1)-(6) in linear form u = U∞f
′(η), v = − 1

2

√
U∞
x ν(f(η)− ηf ′(η)), η = y

√
U∞
(νx) ,

ψ =
√
(U∞νx)f(η), θ(η) =

T−T∞
Tf−T∞

, ϕ1(η) =
C1−C1∞
C1w−C2∞

, ϕ2(η) =
C2−C2∞
C2w−C2∞

(8)

Where ψ is the stream function and u and v are the velocity components. Reducing
the equations (1)-(6) in the form of non-dimensional with the help of equation (8)

(1 +
1

β
)f ′′′ +

1

2
ff ′′ −M2f ′ + λθ +N1ϕ1 +N2ϕ2 = 0 (9)

(1 +
Nr

Pr
)θ′′ + (

Pr

2
)fθ′ + λ1θ = 0 (10)

ϕ1
′′ + 1

2Sc1fϕ1
′ −R1Sc1ϕ1 = 0 (11)

ϕ2
′′ + 1

2Sc2fϕ2
′ −R2Sc2ϕ2 = 0 (12)

The boundary conditions are :{
f(η) = fw, f

′(η) = 0, θ′(η) = −a[1− θ(η)], ϕ1(η) = 1, ϕ2(η) = 1; at η = 0
f ′(η) = 1, θ(η) = 0, ϕ1(η) = 0, ϕ2(η) = 0; at η → ∞

(13)

where η∞ is the edge of the boundary layer;

Local Concentration Grashof number(GC1) = g0βC1(C1 − C1∞)x3/ν2

Local Concentration Grashof number(GC2) = g0βC2(C2 − C2∞)x3/ν2

Local Temperature Grashof number(GT ) = g0βT (Tf − Tw)x
3/ν2

Prandtl number(Pr) = ν
α

Buoyancy force parameter(N1) =
DC1

ReX2

Buoyancy force parameter(N2) =
DC2

ReX2

Schmidt number(Sc1) =
ν

DB1

Schmidt number(Sc2) =
ν

DB2

Mixed convection Parameter(λ1) =
GT

ReX2

Magnetic parameter(M) = B0

√
σ

ρU∞

When λ1 > 0 then the Mixed convection parameter corresponds to assisting flow
and when λ1 < 0 then it is opposing flow.The coefficient of Skin friction (Cfx), the
Nusselt number(Nux), and the Sherwood numbers (Shx1),(Shx2), are defined as,

Cfx = 2Rex
− 1

2
f ′′(0), Rex

− 1

2
Nux = θ′(0),

Shx1 = −Rex−
1

2
ϕ1

′(0)), Shx2 = −Rex−
1

2
ϕ2

′(0)), (14)

3 Results and Discussion:

In this segment, results are calculated with the help of the above equation (9)-(12)
and are solved with equation (9) using the BVP4C technique and the outcome are
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discussed through graphs. This study numerically calculated the velocity f’, tem-
perature θ, concentrations ϕ1&ϕ2, skin friction as well as heat transfer for different
non-dimensional parameters which are demonstrated in figs (2-18). For the verifi-
cation of this study, current results are compared to the previous study shown in
Table ?? with the Ref. papers (18), (27). The effect of Convective parameter(a) on
the profile of velocity. From Fig. 2, It is noticed that if the value of the Convec-
tive parameter(a) increased, then the velocity profiles also increased. Also from the
boundary condition it is perceived that if ’a’ is raised to infinity then the outcomes
of surface temperature get a higher value as well. In the profile of velocity, Tem-
perature and concentrations if the suction injection effect is applied, then according
to the suction (fw > 0) the fluid is being removed from the flow, which creates a
local pressure region in the flow field. elsewhere, in the injection (fw < 0) fluid is
added to the flow or the extra fluid is counted. Come to Fig.3 which states the
temperature profile, it is easy to understand that when the amount of the fluid is
less then the temperature mid between the particle of fluid flow is higher or it is
stated that in the impact of suction (fw > 0) creates a lower pressure region in the
flow, which can lead to a decrease in temperature due to the decrease in overall
energy content of the fluid. This is a result of the reduced enthalpy associated
with the lower pressure. The temperature profile near the injection (fw < 0) point
can be influenced by the temperature of the injected fluid. If the injected fluid is
warmer, it can lead to an increase in temperature in the vicinity of the injection
point. The presence of heat sources and sinks can significantly influence fluid flow
patterns and temperature distributions within a system. From Fig. 4 and 5, in
the presence of the heat source/ sink parameter (λ), the velocity and temperature
profile increases when the value of the heat source/sink parameter increases due to
variation of thermal energies in the fluid flow. [h]

Table 2: Relative study of Heat Transfer rate at the sheet for numerous ranges of a

When fw= M= λ = 0 and Pr = 10 between Shankar S., et al(27) and the current
work.

constant Ref.(18) Ref.(27) PresentWork
a (−θ′)(0)) (−θ′)(0)) (−θ′)(0))
0.8 0.381191 0.381201 0.381186
1 0.421344 0.421252 0.421338
5 0.635583 0.635601 0.635571
10 0.678721 0.678711 0.678707
20 0.702563 0.702601 0.702549

The mixed Convection Parameter (λ1), inside the Boundary layer wall, increases
the velocity as the buoyancy force is added (λ1 > 0), the concentration profile
decreases when the value of the mixed convection parameter increases which is pre-
sented in Fig.6 and Fig.7. The impact of the Magnetic field parameter (M) for the
velocity profile is shown in Fig.8 which states that the velocity decreases as the
magnetic field is increased. Lorentz force increases as increases the magnetic field,
resulting in the resistance increasing as well and due to this the velocity decreases
inside the boundary layer. Temperature profile and Concentration profile presented
in Fig.9, 10 and 11 give the impact of the Magnetic field (M). The temperature
and concentration profiles are observed in the existence of a Magnetic field (M),
as the Magnetic field increases in the fluid flow the temperature is increased. The
concentration profile also behaves the same as temperature with the magnetic field.
Both the Temperature and Concentration profile are increased as increases with
the Magnetic field (M). Fig.12 displayed the graph between the temperature profile
and Radiation parameter, stating that with the effect of radiation in fluid flow, the
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Table 3: Properties of Thermo physical of NaCl and Sucrose at 25◦C from Shankar

S., et al(27).
Components Morality Weights% ν(×10−6) Ds(×10−6) Sc ∆C Nc

0.01 0.0584 1.003 1.545 649.19 0.0108 -2.48
Nacl 0.05 0.2922 1.007 1.502 670.43 0.03 -6.86

0.1 0.05844 1.011 1.483 681.72 0.05 -11.43
0.5 2.922 1.031 1.472 700.4 0.48 -91.51
1.0 5.844 1.058 1.484 712.93 0.5 -114.3
0.01 0.342 1.014 0.521 1946.25 0.0108 -1.36

Sucrose 0.05 1.7115 1.043 0.468 2226.4 0.03 -3.77
0.1 3.423 1.08 0.451 2597.4 0.05 -6.28
0.5 17.115 1.610 0.442 3635.95 0.4 -50.3
1.0 34.23 3.535 0.466 7585.83 0.5 -62.87

Table 4: : The rate of coefficient of skin friction, coefficient of transfer of mass, and
coefficient of transfer of heat for assorted non-dimensional parameters:
a fw λ λ1 N1 N2 Nr β Pr M R1 R2 Sc1 Sc2 f”(0) −θ′(0) −ϕ1′(0) −ϕ2′(0)
1 0.941407 0.326776 0.42599 0.456568
2 0.1 0.1 1 1 1.5 0.1 0.5 2 1 0.1 0.1 2.5 3 0.968986 0.393397 0.432001 0.393395
3 0.98079 0.42336 0.434546 0.466287

-0.2 1.03431 0.256811 0.225586 0.225586
1 -0.1 0.1 1 1 1.5 0.1 0.5 2 1 0.1 0.1 2.5 3 1.0036 0.277131 0.294636 0.294636

0.1 0.941407 0.326776 0.42599 0.456568
0.2 0.910529 0.35146 0.500845 0.54919

0.2 0.955528 0.28894 0.4299 0.460984
1 0.1 0.3 1 1 1.5 0.1 0.5 2 1 0.1 0.1 2.5 3 0.880178 0.37584 0.581348 0.6492

0.5 1.02367 0.111128 0.448566 0.481968
2 1.07854 0.336191 0.454996 0.489426

1 0.1 0.1 3 1 1.5 0.1 0.5 2 1 0.1 0.1 2.5 3 1.20887 0.344437 0.480658 0.518284
4 1.3335 0.351762 0.50368 0.544025

2 1.4568 0.340277 0.467695 0.503785
1 0.1 0.1 1 2.5 1.5 0.1 0.5 2 1 0.1 0.1 2.5 3 1.24404 0.346181 0.486147 0.52452

3 1.34026 0.351635 0.50332 0.543742
2 1.04101 0.33333 0.446169 0.47952

1 0.1 0.1 1 1 2.5 0.1 0.5 2 1 0.1 0.1 2.5 3 1.13785 0.339313 0.46471 0.500502
3 1.23229 0.344812 0.481884 0.519855

0.5 0.939397 0.332216 0.425434 0.455939
1 0.1 0.1 1 1 1.5 2.5 0.5 2 1 0.1 0.1 2.5 3 0.934938 0.344333 0.4242 0.454545

7 0.932304 0.351524 0.423472 0.453721
1 1.18766 0.337913 0.460554 0.496715

1 0.1 0.1 1 1 1.5 0.1 1.5 2 1 0.1 0.1 2.5 3 1.32315 0.343131 0.476998 0.515822
2 1.40955 0.346187 0.486713 0.527118

5 0.890574 0.438856 0.410308 0.438856
1 0.1 0.1 1 1 1.5 0.1 0.5 7 1 0.1 0.1 2.5 3 0.874273 0.487666 0.405927 0.433851

10 0.858763 0.537411 0.402169 0.429533
2 0.686251 0.283281 0.293155 0.304612

1 0.1 0.1 1 1 1.5 0.1 0.5 2 2.5 0.1 0.1 2.5 3 0.598314 0.238594 0.238594 0.26554
3 0.529289 0.182999 0.1943327 0.251155

0.1 0.965534 0.329515 0.193649 0.466009
1 0.1 0.1 1 1 1.5 0.1 0.5 2 1 0.2 0.1 2.5 3 0.999693 0.333354 0.108434 0.479209

0.3 0.941407 0.326776 0.42599 0.456568
0 0.913539 0.323714 0..41661 0.665877

1 0.1 0.1 1 1 1.5 0.1 0.5 2 1 0.1 0.1 2.5 3 0.941407 0.326776 0.42599 0.456568
0.2 0.978782 0.330841 0.438473 0.199103

3 0.933673 0.335694 0.452877 0.452877
1 0.1 0.1 1 1 1.5 0.1 0.5 2 1 0.1 0.1 5 3 0.910704 0.322609 0.442281 0.457293

7 0.895246 0.320677 0.435594 0.62798
4 0.922117 0.324165 0.417999 0.503224

1 0.1 0.1 1 1 1.5 0.1 0.5 2 1 0.1 0.1 2.5 5 0.906819 0.322148 0.411826 0.545151
6 0.894242 0.320534 0.406893 0.583771
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Figure 2: Change in f ′(η) with assorted
values of a(Convective parameter)

Figure 3: Change in θ(η) with various
values of fw(Injection/Suction Parame-
ter)

Figure 4: Change in f ′(η) with assorted
values of λ(Heat Source/sink Parameter)

Figure 5: Change in θ(η) with various
values of λ(Heat Source/sink Parameter)

temperature decreases. It is noticed that chemical reaction parameters R1 and R2

affect the density of fluid flow, which in turn can impact buoyancy forces, pressure
gradients, and fluid flow velocity. These changes are particularly relevant in com-
bustion processes, where chemical reactions can release energy and result in changes
in temperature, density, and velocity. In Fig.13 to 16 observed that the velocity
and concentration profiles increase as R1 and R2 increase. Concentration profile
ϕ1 has been taken for R1, while concentration profile ϕ2 has been taken for R2.
Based on the earlier study, a higher Schmidt number impacts diffusion and leads to
thicker concentration boundary layers, slower mass transport, and potentially dif-
ferent mixing characteristics. Looking at the data presented in Fig.17 and Fig.18,
it appears that there are various values of the Schmidt numbers Sc1 and Sc1 that
impact velocity profiles. Specifically, if the Schmidt number increases, all profiles
of velocities decrease.

9
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Figure 6: Change in ϕ1(η) with assorted
values of λ1(Convection Parameter)

Figure 7: Change in ϕ1(η) with assorted
values of λ1(Convection Parameter)

Figure 8: Change in f ′(η) with assorted
values of M(Magnetic Field)

Figure 9: Change in θ(η) with assorted
values of M(Magnetic Field)

Figure 10: Change in ϕ1(η) with as-
sorted values of M(Magnetic Field)

Figure 11: Change in ϕ2(η) with as-
sorted values of M(Magnetic Field)
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Figure 12: Change in θ(η) with assorted
values of Nr(Radiation Parameter)

Figure 13: Change in f ′(η) with assorted
values of R1(Parameter of Chemical Re-
action )

Figure 14: Change in ϕ1(η) with as-
sorted values of R1(Parameter of Chem-
ical Reaction )

Figure 15: Change in f ′(η) with assorted
values of R2(Parameter of Chemical Re-
action )

Figure 16: Change in ϕ1(η) with as-
sorted values of R1(Parameter of Chem-
ical Reaction )

Figure 17: Change in f ′(η) with assorted
values of Sc1(Schmidt number)
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Figure 18: Change in f ′(η) with assorted values of Sc2(Schmidt number)

4 Conclusion:

Triple diffusive MHD fluid flow with radiation can lead to valuable insights that can
improve technology, resource utilization and our understanding of complex physical
phenomena.This numerical study shows that a Casson fluid flows with triple MHD,
in the existence of radiation, Chemical reaction and Heat source or sink. The
presence of all parameters gets results numerically and graphically, and these are
the subsequent results:

• The sucrose concentration boundary layer is thinner than NaCl. Due to the
smaller size of NACl ions, the diffusion of NACl particles in the liquid is deeper
than that of sucrose.

• The Temperature Profile goes down when Suction/Injection Parameter(fw)
upsurges.

• Boundary layer thickness is upsurged in both velocity and temperature pro-
files when heat source/sink parameter(λ) enlarges due to variation of thermal
energies in the fluid flow,

• When we applied the Magnetic parameter (M), it enhanced the temperature
profile and concentration profile but decreased the velocity by raising the value
of M.

• The fluid temperature decays when the Radiation parameter (Nr) enlarges.

• The chemical reaction parameters R1 andR2 significantly affect the density of
fluid flow, the velocity and concentration boost with rising R1 and R2.

• The velocity profile increases by the convection parameter ‘a’ increased.

• In the future, we will extend this flow model to convective heating scenarios
including a variety of geometries such as Riga plates, cylindrical sheets, etc.

References

[1] Abbas, N., Shatanawi, W.,& Abodayeh, K. (2022). Computational analysis of
MHD nonlinear radiation casson hybrid nanofluid flow at vertical stretching
sheet. Symmetry, 14(7), 1494.

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

322 Atiya Ali et al 311-325



[2] Devi, S. S. U., & Devi, S. A. (2016). Numerical investigation of three-dimensional
hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting
Lorentz force subject to Newtonian heating. Canadian Journal of Physics, 94(5),
490-496.

[3] Farooq, U., Hussain, M., Ijaz, M. A., Khan, W. A., & Farooq, F. B. (2021). Im-
pact of non-similar modeling on Darcy-Forchheimer-Brinkman model for forced
convection of Casson nano-fluid in non-Darcy porous media. International Com-
munications in Heat and Mass Transfer, 125, 105312.

[4] Gireesha, B. J., Archana, M., Prasannakumara, B. C., Gorla, R. R., & Makinde,
O. D. (2017). MHD three dimensional double diffusive flow of Casson nanofluid
with buoyancy forces and nonlinear thermal radiation over a stretching surface.
International Journal of Numerical Methods for Heat & Fluid Flow, 27(12),
2858-2878.

[5] Gnanaprasanna, K., & Singh, A. K. (2022). A numerical approach of forced
convection of Casson nanofluid flow over a vertical plate with varying viscosity
and thermal conductivity. Heat Transfer, 51(7), 6782-6800.

[6] Hameed, N., Noeiaghdam, S., Khan, W., Pimpunchat, B., Fernandez-Gamiz,
U., Khan, M. S., & Rehman, A. (2022). Analytical analysis of the magnetic
field, heat generation and absorption, viscous dissipation on couple stress casson
hybrid nanofluid over a nonlinear stretching surface. Results in Engineering, 16,
100601.

[7] Hayat, T., Ullah, I., Muhammad, T., & Alsaedi, A. (2017). Radiative three-
dimensional flow with Soret and Dufour effects. International Journal of Me-
chanical Sciences, 133, 829-837.

[8] Irfan, H. M., Khan, A. (2022). Numerical Investigation of Suction/Injuction on
Triple Diffusive MHD Casson Fluid Flow over a Vertical Stretching Surface.
International Journal of Advancements in Mathematics, 2(2), 105-122.

[9] Isa, S. S. P. M., Arifin, N. M., Nazar, R., Bachok, N., Ali, F. M., & Pop, I.
(2017). MHD mixed convection boundary layer flow of a Casson fluid bounded
by permeable shrinking sheet with exponential variation. Scientia Iranica, 24(2),
637-647.

[10] Jain, R., Mehta, R., Rathore, H., Singh, J. (2022). Analysis of Soret and Du-
four Effect on MHD Fluid Flow Over a Slanted Stretching Sheet with Chemical
Reaction, Heat Source and Radiation. In Advances in Mathematical Modelling,
Applied Analysis and Computation: Proceedings of ICMMAAC 2021 (pp. 571-
597). Singapore: Springer Nature Singapore.

[11] Jain, R., Mehta, R., Mehta, T., Singh, J., Baleanu, D. (2023). MHD flow
and heat and mass transport investigation over a decelerating disk with ohmic
heating and diffusive effect. Thermal Science, 27(Spec. issue 1), 141-149.

[12] Jangid, S., Mehta, R., Singh, J., Baleanu, D., Alshomrani, A. S. (2023). Heat
and mass transport of hydromagnetic Williamson nanofluid passing through a
permeable media across an extended sheet of varying thickness. Thermal Science,
27(Spec. issue 1), 129-140.

[13] Jena, S., Dash, G. C., & Mishra, S. R. (2018). Chemical reaction effect on MHD
viscoelastic fluid flow over a vertical stretching sheet with heat source/sink. Ain
Shams Engineering Journal, 9(4), 1205-1213.

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

323 Atiya Ali et al 311-325



[14] Khan, Z.H.; Khan, W.A.; Sheremet, M.A.(2020). Enhancement of heat and
mass transfer rates through various porous cavities for triple convective-diffusive
free convection. Energy, 201, https://doi.org/10.1016/j.energy.2020.117702.

[15] Khan, Z.H.; Khan, W.A.; Tang, J.; Sheremet, M.A. (2020). Entropy genera-
tion analysis of triple diffusive flow past a horizontal plate in porous medium.
Chemical Engineering Science,228,https://doi.org/10.1016/j.ces.2020.115980.

[16] Khashi’ie, N. S., Waini, I., Kasim, A. R. M., Zainal, N. A., Ishak, A., & Pop,
I. (2022). Magnetohydrodynamic and viscous dissipation effects on radiative
heat transfer of non-Newtonian fluid flow past a nonlinearly shrinking sheet:
Reiner–Philippoff model. Alexandria Engineering Journal, 61(10), 7605-7617.

[17] Kumar, R., Singh, J., Mehta, R., Kumar, D.,& Baleanu, D. (2023). Analysis
of the impact of thermal radiation and velocity slip on the melting of mag-
netic hydrodynamic micropolar fluid-flow over an exponentially stretching sheet.
Thermal Science, 27(Spec. issue 1), 311-322.

[18] Lanjwani, H. B., Chandio, M. S., Anwar, M. I., Al-Johani, A. S., Khan, I., &
Alam, M. (2022). Triple Solutions with Stability Analysis of MHD Mixed Con-
vection Flow of Micropolar Nanofluid with Radiation Effect. Journal of Nano-
materials, 2022.

[19] Lund, L. A., Omar, Z., Khan, I., Raza, J., Sherif, E. S. M., & Seikh, A. H.
(2020). Magnetohydrodynamic (MHD) flow of micropolar fluid with effects of
viscous dissipation and joule heating over an exponential shrinking sheet: triple
solutions and stability analysis. Symmetry, 12(1), 142.

[20] Makkar, V., Poply, V., & Sharma, N. (2023). Three-dimensional magnetohy-
drodynamic non-Newtonian bioconvective nanofluid flow influenced by gyrotac-
tic microorganisms over stretching sheet. Heat Transfer,vol 52,issue1 pg.548-562.

[21] Manjappa, A.; Jayanna, G.B.; Chandrappa, P.B. (2019). Triple diffu-
sive flow of Casson nanofluid with buoyancy forces and non-linear ther-
mal radiation over a horizontal plate. Archives of Thermodynamics, 40, 49-
69,https://doi.org/10.24425/ather.2019.12828.

[22] Mehta, R., Kumar, R., Rathore, H., Singh, J. (2022). Joule heating effect on
radiating MHD mixed convection stagnation point flow along vertical stretching
sheet embedded in a permeable medium and heat generation/absorption. Heat
Transfer, 51(8), 7369-7386.

[23] Nawaz, M.; Awais, M. (2020). Triple diffusion of species in fluid regime us-
ing tangent hyperbolic rheology. Journal of Thermal Analysis and Calorimetry,
https://doi.org/10.1007/s10973-020-10026-0.

[24] Parvin, S., Balakrishnan, N., & Isa, S. S. P. M. (2021). MHD Casson fluid
flow under the temperature and concentration gradients. Magnetohydrodynam-
ics (0024-998X), 57(3).

[25] Patil, P.M.; Roy, M.; Roy, S.; Momoniat, E. (2018). Triple dif-
fusive mixed convection along a vertically moving surface. In-
ternational Journal of Heat and Mass Transfer, 117, 287-295,
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.106.

[26] Prasad, J. R., Rao, I. V., Balamurugan, K. S., & Dharmaiah, G. (2022). Radia-
tive Magnetohydrodynamic Flow Over a Vertical Cone Filled With Convective
Nanofluid. Communications in Mathematics and Applications, 13(2), 449.

14

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

324 Atiya Ali et al 311-325



[27] Raghunatha, K.R.; Shivakumara, I.S.; Shankar, B.M. (2018). Weakly non-
linear stability analysis of triple diffusive convection in a Maxwell fluid
saturated porous layer. Applied Mathematics and Mechanics, 39, 153-168,
https://doi.org/10.1007/s10483-018-2298-6.

[28] Ramesh, K., Riaz, A., & Dar, Z. A. (2021). Simultaneous effects of MHD and
Joule heating on the fundamental flows of a Casson liquid with slip boundaries.
Propulsion and Power Research, 10(2), 118-129.

[29] Rao, P. S., Prakash, O., Mishra, S. R., & Sharma, R. P. (2020). Similarity
solution of three-dimensional MHD radiative Casson nanofluid motion over a
stretching surface with chemical and diffusion-thermo effects. Heat Transfer,
49(4), 1842-1862.

[30] Reddy, B. N., & Maddileti, P. (2023). Casson nanofluid and joule parameter
effects on variable radiative flow of MHD stretching sheet. Partial Differential
Equations in Applied Mathematics, 100487.

[31] Shaheen, N., Alshehri, H. M., Ramzan, M., Shah, Z., & Kumam, P. (2021).
Soret and Dufour effects on a Casson nanofluid flow past a deformable cylinder
with variable characteristics and Arrhenius activation energy. Scientific Reports,
11(1), 19282.

[32] Shankar, S., Ramakrishna, S. R., Gullapalli, N., & Samuel, N. (2021). Triple
diffusive MHD Casson fluid flow over a vertical wall with convective boundary
conditions. Biointerface Res Appl Chem, 11, 13765-13778.

[33] Sneha, K. N., Bognar, G., Mahabaleshwar, U. S., Singh, D. K., & Singh, O.
P. (2023). Magnetohydrodynamics Effect of Marangoni Nano Boundary Layer
Flow And Heat Transfer With CNT And Radiation. Journal of Magnetism and
Magnetic Materials, 170721.

[34] Umavathi, J.C.; Ali, H.M.; Patil, S.L. (2020). Triple diffusive mixed convection
flow in a duct using convective boundary conditions. Mathematical Methods in
the Applied Sciences, 43, 9223-9244, https://doi.org/10.1002/mma.6617.

[35] Xia, W. F., Ahmad, S., Khan, M. N., Ahmad, H., Rehman, A., Baili, J., &
Gia, T. N. (2022). Heat and mass transfer analysis of nonlinear mixed convective
hybrid nanofluid flow with multiple slip boundary conditions. Case Studies in
Thermal Engineering, 32, 101893.

15

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

325 Atiya Ali et al 311-325



FRACTIONAL CALCULUS OPERATORS OF THE GENERALIZED

HURWITZ-LERCH ZETA FUNCTION

SHILPA KUMAWAT‡ AND HEMLATA SAXENA§

Abstract. In this paper, our aim is to establish certain generalized Marichev-Saigo-Maeda frac-

tional integral and derivative formulas involving generalized p–extended Hurwitz-Lerch zeta function

by using the Hadamard product (or the convolution) of two analytic functions. We then obtain their

composition formulas by using fractional integral and derivative formulas and certain Integral trans-

forms associated with Beta, Laplace and Whittaker transforms involving generalized p–extended

Hurwitz-Lerch Zeta function.

1. Introduction

Fractional calculus is the field of mathematical analysis which deals with the investigation and appli-

cations of integrals and derivatives of arbitrary order. The study of fractional integrals and fractional

derivatives has a long history, and they have many real-world applications due to their properties of

interpolation between operators of integer order and its applications in various fields of science and

engineering, such as fluid flow, rheology, diffusive transport akin to diffusion, electrical networks, and

probability. This field has covered classical fractional operators such as Riemann-Liouville, Weyl,

Caputo, Grnwald-Letnikov, etc. Also, especially in the last two decades, many new operators have

appeared, often defined using integrals with special functions in the kernel, such as Atangana-Baleanu,

Prabhakar, Marichev-Saigo-Maeda, and tempered, as well as their extended or multivariable forms.

These have been intensively studied because they can also be useful in modelling and analysing real-

world processes because of their different properties and behaviours, which are comparable to those

of the classical operators[8, 22, 23, 24]. Special functions, such as the Hurwitz-Lerch Zeta function,

Mittag-Leffler functions, hypergeometric functions, Foxs H-functions, Wright functions, Bessel and

hyper-Bessel functions, etc., also have some more classical and fundamental connections with frac-

tional calculus [13]. Some of them, such as the Mittag-Leffler function and its generalisations, appear

naturally as solutions of fractional differential equations or fractional difference equations. Further-

more, many interesting relationships between different special functions may be discovered using the

operators of fractional calculus. Because of their significance and potential for applications, fractional

calculus operators (such as the Riemann-Liouville, Weyl, Liouville-Caputo, and other operators of

2010 Mathematics Subject Classification. Primary 26A33, 33B15; Secondary 33C05, 33C99, 44A20.

Key words and phrases. Hurwitz-Lerch Zeta Function; p–extended Hurwitz-Lerch Zeta Function; Fractional Calculus

operators.
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2 SHILPA KUMAWAT AND HEMLATA SAXENA

fractional integrationandfractional derivative) have undergone extensive development and study (for

more information, seein [12], [18] and [26]).

We begin by recalling a general pair of fractional integral operators known as Marichev-Saigo-

Maeda that have the third-order Appell’stwo-variable hypergeometric function F3(.) as their kernel

(see for more information, [15, 20, 21]), which is defined by:

Definition 1. Let $1, $
′
1, ν1, ν

′
1, ξ ∈ C and x > 0, then for <(ξ) > 0,(

I
$1,$

′
1,ν1,ν

′
1,ξ

0,x f
)

(x) =
x−$1

Γ(ξ)

∫ x

0

(x− t)ξ−1 t−$
′
1

× F3

(
$1, $

′
1, ν1, ν

′
1; ξ; 1− t

x
, 1− x

t

)
f(t) dt. (1.1)

and (
I
$1,$

′
1,ν1,ν

′
1,ξ

x,∞ f
)

(x) =
x−$

′
1

Γ(ξ)

∫ ∞
x

(t− x)
ξ−1

t−$1

× F3

(
$1, $

′
1, ν1, ν

′
1; ξ; 1− x

t
, 1− t

x

)
f(t) dt. (1.2)

Here, the Appell’s hypergeometric function of two variables, [25], is denoted by F3(.).

Definition 2. Let $1, $
′
1, ν1, ν

′
1, ξ ∈ C and x > 0, then for <(ξ) > 0,(

D
$1,$

′
1,ν1,ν

′
1,ξ

0,x f
)

(x) =
(
I
−$′

1,−$1,−ν′
1,−ν1,−ξ

0+ f
)

(x)

=

(
d

dx

)n (
I
−$′

1,−$1,−ν′
1+n,−ν1,−ξ+n

0+ f
)

(x) (n = [<(ξ)] + 1)

=
1

Γ(n− ξ)

(
d

dx

)n
x$

′
1

∫ x

0

(x− t)n−ξ−1 tσ

× F3

(
−$′1,−$1, n− ν′1,−ν1;n− ξ; 1− t

x
, 1− x

t

)
f(t) dt. (1.3)

and(
D
$1,$

′
1,ν1,ν

′
1,ξ

x,∞ f
)

(x) =
(
I
−$′

1,−$1,−ν′
1,−ν1,−ξ

− f
)

(x)

=

(
− d

dx

)n (
I
−$′

1,−$1,−ν′
1,−ν

′
1+n,−ξ+n

− f
)

(x) (n = [<(ξ)] + 1)

=
1

Γ(n− ξ)

(
− d

dx

)n
x$

′
1

∫ ∞
x

(t− x)
n−ξ−1

tσ
′

× F3

(
−$′1,−$1, ν

′
1, n− ν1;n− ξ; 1− x

t
, 1− t

x

)
f(t) dt. (1.4)

These operators include Riemann-Liouville, Erdélyi-Kober, and Saigo hypergeometric fractional

calculus operators as special examples for various parameter choices (see for more information, [12],

[18] and [26]). Early on, the p–extended Bessel function, p–modified Bessel function, p–extended

Sturve function,and p–extended Mathieu series were used by a number of authors to create some

intriguing generalized fractional formulas, ( see, for details, [5, 10]).
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The more generalized form of Hurwitz-Lerch zeta function has been considered very recently by

Luo et al. [17] in the following form

Φ
(θ,θ′)
λ,ϑ;ν (z, s, a; p) :=

∞∑
n=0

(λ)n
n!

B(θ,θ′)(ϑ+ n, ν − ϑ ; p)

B(ϑ, ν − ϑ)

zn

(n+ a)s
(1.5)

(
<(θ) > 0,<(θ′) > 0,<(p) ≥ 0; p, λ, ϑ, s ∈ C; ν, a ∈ C \ Z−0 ; |z| < 1

)
.

where B(θ,θ′)(x, y; p) denotes the generalized Beta function, that is introduced by Chaudhry et al. [2]

B(θ,θ′)(x, y; p) = B(θ,θ′)
p (x, y) =

∫ 1

0

tx−1(1− t)y−1 1F1(θ; θ′;−p
t
)dt , (1.6)

when min{<(θ) > 0,<(θ′) > 0,<(x),<(y)} > 0;<(p) ≥ 0. They also introduced p-extended of

hypergeometric function as [3]:

F (θ,θ′)
p (a, b; c; z) =

∑
n≥0

(a)n
B(θ,θ′)(b+ n, c− b ; p)

B(b, c− b)
zn

n!
p = 0; |z| < 1; <(c) > <(b) > 0 , (1.7)

Additionally provided in [4]are related properties, multiple integral representations, differentiation

formulæ, Mellin transforms, recurrence relations, and summations.

The definition of the Hadamard product (or convolution) of two analytical functions, such as in[5],

is necessary for the present study. If the Rf and Rg be the radii of convergence of the two power series

f(z) :=

∞∑
n=0

anz
n (|z| < Rf ) and g(z) :=

∞∑
n=0

bnz
n (|z| < Rg),

respectively. Then the Hadamard product is the new emerged series defined by

(f ∗ g)(z) :=
∞∑
n=0

an bnz
n = (g ∗ f)(z) (|z| < R) (1.8)

where

R = lim
n→∞

∣∣∣∣ an bn
an+1 bn+1

∣∣∣∣ =

(
lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣) .( lim
n→∞

∣∣∣∣ bnbn+1

∣∣∣∣) = Rf .Rg,

so that, in general, we have R = Rf ·Rg.
In the following study, we seek to broaden the compositions of the generalized fractional integral

and differential operators (1.1), (1.2), (1.3) and (1.4) for the p–extended Hurwitz-Lerch zeta function

(1.5) by using the Hadamard product (1.8) in terms of p–extended Hurwitz-Lerch zeta function and

Wright hypergeometric function.

2. Fractional formulas of the p–extended Hurwitz-Lerch zeta function

The Wright hypergeometric function rΨs(z) (r, s ∈ N0) having numerator and denominator pa-

rameters r and s, respectively, defined for ζ1, . . . , ζr ∈ C and κ1, . . . , κs ∈ C\Z−0 by (see, for example,

[11, 14, 18, 25]):

rΨs

[
(ζ1, A1), · · · , (ζr, Ar);
(κ1, B1), · · · , (κs, Bs);

z

]
=
∞∑
n=0

Γ(ζ1 +A1n) · · ·Γ(ζr +Arn)

Γ(κ1 +B1n) · · ·Γ(κs +Bsn)

zn

n!
(2.1)
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4 SHILPA KUMAWAT AND HEMLATA SAXENAAj ∈ R+ (j = 1, . . . , r); Bj ∈ R+ (j = 1, . . . , s); 1 +
s∑
j=1

Bj −
r∑
j=1

Aj = 0

 ,

with

|z| < ∇ :=

 r∏
j=1

A
−Aj

j

 .

 s∏
j=1

B
Bj

j

 .

Also, if we take Aj = Bk = 1 (j = 1, . . . , r; k = 1, . . . , s) in (2.1), reduces to the generalized

hypergeometric function rFs (r, s ∈ N0) (see, e.g., [25]):

rFs

[
ζ1, . . . , ζr;

κ1, . . . , κs;
z

]
=

Γ(κ1) · · ·Γ(κs)

Γ(ζ1) · · ·Γ(ζr)
rΨs

[
(ζ1, 1), · · · , (ζr, 1);

(κ1, 1), · · · , (κs, 1);
z

]
. (2.2)

In the context of our investigation, the image formulas or power functions below, referencing [1],are

significant.

Lemma 1. Let $1, $
′
1, ν1, ν

′
1, ξ, % ∈ C and x > 0. The relation that follows is then:

(a) If <(ξ) > 0 and <(%) > max {0,<($1 +$′1 + ν1 − ξ),<($′1 − ν′1)}, then(
I
$1,$

′
1,ν1,ν

′
1,ξ

0,x t%−1
)

(x) =
Γ(%)Γ(%+ ξ −$1 −$′1 − ν1)Γ(%+ ν′1 −$′1)

Γ(%+ ν′1)Γ(%+ ξ −$1 −$′1)Γ(%+ ξ −$′1 − ν1)
x%+ξ−$1−$′

1−1 (2.3)

(b) If <(ξ) > 0 and <(%) < 1 + min {<(−ν1),<($1 +$′1 − ξ),<($1 + ν′1 − ξ)}, then(
I
$1,$

′
1,ν1,ν

′
1,ξ

x,∞ t%−1
)

(x) =
Γ(1− %− ν1)Γ(1− %− ξ +$1 +$′1)Γ(1− %− ξ +$1 + ν′1)

Γ(1− %)Γ(1− %− ξ +$1 +$′1 + ν′1)Γ(1− %+$1 − ν1)
x%+ξ−$1−$′

1−1.

(2.4)

Lemma 2. Let $1, $
′
1, ν1, ν

′
1, ξ, % ∈ C and x > 0. The relation that follows is then:

(a) If <(ξ) > 0 and <(%) > max {0,<(ξ −$1 −$′1 + ν′1),<(ν1 −$1)}, then(
D
$1,$

′
1,ν1,ν

′
1,ξ

0,x t%−1
)

(x) =
Γ(%)Γ(%− ξ +$1 +$′1 + ν′1)Γ(%− ν1 +$1)

Γ(%− ν1)Γ(%− ξ +$1 +$′1)Γ(%− ξ +$1 + ν′1)
x%−ξ+$1+$

′
1−1 (2.5)

(b) If <(ξ) > 0 and <(%) < 1 + min {<(ν′1),<(ξ −$1 −$′1),<(ξ −$′1 − ν1)}, then(
D
$1,$

′
1,ν1,ν

′
1,ξ

x,∞ t%−1
)

(x) =
Γ(1− %− ν′1)Γ(1− %+ ξ −$1 −$′1)Γ(1− %+ ξ −$′1 − ν1)

Γ(1− %)Γ(1− %+ ξ −$1 −$′1 − ν)Γ(1− %−$′1 − ν′1)
x%−ξ+$1+$

′
1−1.

(2.6)

We begin the key outcomes exposition with showing the composition formulae for generalized

fractional operators (1.1), (1.2), (1.3) and (1.4) involving the p–extended Hurwitz-Lerch zeta function

by making use of the Hadamard product (1.8) in terms of p–extended Hurwitz-Lerch zeta function

(1.5) and Fox-Wright function (2.1).

Theorem 1. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C\Z−0 such that <(ξ) > 0

and <(%) > max {0,<($1 +$′1 + ν1 − ξ),<($′1 − ν′1)} with |t| < 1. Then for <(p) ≥ 0, the fractional

integration formula shown below is valid:(
I
$1,$

′
1,ν1,ν

′
1,ξ

0,x

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν (tγ , s, a; p)

})
(x)
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= x%+ξ−$1−$′
1−1 Φ

(θ,θ′)
λ,ϑ;ν (xγ , s, a; p)

∗ 4Ψ3

[
(1, 1), (%, γ), (%+ ξ −$1 −$′1 − ν1, γ), (%+ ν′1 −$′1, γ);

(%+ ν′1, γ), (%+ ξ −$1 −$′1, γ), (%+ ξ −$′1 − ν1, γ);
xγ

]
.

Proof. Using the relation (2.3) and the definitions (1.5) and (1.1),we can shift the order of integration.

Thus, we obtain for x > 0(
I
$1,$

′
1,ν1,ν

′
1,ξ

0,x

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν (tγ , s, a; p)

})
(x)

=
∞∑
k=0

(λ)k B(θ,θ′)(ϑ+ k, ν − ϑ ; p)

(k + a)s B(ϑ, ν − ϑ) k!

(
I
$1,$

′
1,ν1,ν

′
1,ξ

0,x {t%+γk−1}
)

(x)

= x%+ξ−$1−$′
1−1

∞∑
k=0

(λ)k B(ϑ+ k, ν − ϑ ; p)

(k + a)s B(ϑ, ν − ϑ) k!

× Γ(%+ γk)Γ(%+ ξ −$1 −$′1 − ν1 + γk)Γ(%+ ν′1 −$′1 + γk)

Γ(%+ ν′1 + γk)Γ(%+ ξ −$1 −$′1 + γk)Γ(%+ ξ −$′1 − ν1 + γk)
xγk. (2.7)

Subsequently,the necessary formula is obtained by utilizing the Hadamard product (1.8)in (2.7), which,

in light of (1.5) and (2.1). �

Theorem 2. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C\Z−0 such that <(ξ) > 0

and <(%) < 1 + min {<(−ν1),<($1 +$′1 − ξ),<($1 + ν′1 − ξ)} with |1/t| < 1. Then for <(p) ≥ 0,

the fractional integration formula shown below is valid:(
I
$1,$

′
1,ν1,ν

′
1,ξ

x,∞

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν

(
1

tγ
, s, a; p

)})
(x)

= x%+ξ−$1−$′
1−1 Φ

(θ,θ′)
λ,ϑ;ν

(
1

xγ
, s, a; p

)
∗ 4Ψ3

[
(1, 1), (1− %− ν1, γ), (1− %− ξ +$1 +$′1, γ), (1− %− ξ +$1 + ν′1, γ);

(1− %, γ), (1− %− ξ +$1 +$′1 + ν′1, γ), (1− %+$1 − ν1, γ);

1

xγ

]
.

Theorem 3. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C\Z−0 such that <(ξ) > 0

and <(%) > max {0,<(ξ −$1 −$′1 − ν′1),<(ν1 −$1)} with |t| < 1 . Then for <(p) ≥ 0, the

fractional integration formula shown below is valid:(
D
$1,$

′
1,ν1,ν

′
1,ξ

0,x

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν (tγ , s, a; p)

})
(x)

= x%−ξ+$1+$
′
1−1 Φ

(θ,θ′)
λ,ϑ;ν (xγ , s, a; p)

∗ 4Ψ3

[
(1, 1), (%, γ), (%− ξ +$1 +$′1 + ν′1, γ), (%− ν1 +$1, γ);

(%− ν1, γ), (%− ξ +$1 +$′1, γ), (%− ξ +$1 + ν′1, γ);
xγ

]
.

Proof. Using the relation (2.5), and the definitions (1.5), (1.3), we can shift the order of integration.

Thus, we obtain for x > 0(
D
$1,$

′
1,ν1,ν

′
1,ξ

0,x

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν (xγ , s, a; p)

})
(x)
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=
∞∑
k=0

(λ)k B(θ,θ′)(ϑ+ k, ν − ϑ ; p)

(k + a)s B(ϑ, ν − ϑ) k!

(
D
$1,$

′
1,ν1,ν

′
1,ξ

0,x {t%+γk−1}
)

(x)

= x%−ξ+$1+$
′
1−1

∞∑
k=0

(λ)k B(ϑ+ k, ν − ϑ ; p)

(k + a)s B(ϑ, ν − ϑ) k!

× Γ(%+ γk)Γ(%− ξ +$1 +$′1 + ν′1 + γk)Γ(%− ν1 +$1 + γk)

Γ(%− ν1 + γk)Γ(%− ξ +$1 +$′1 + γk)Γ(%− ξ +$1 + ν′1 + γk)
xγk. (2.8)

Subsequently,the necessary formula (1.3) is obtained by utilizing the Hadamard product (1.8) in (2.8),

which in light of (1.5) and (2.1). �

Theorem 4. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C\Z−0 such that Re(ξ) > 0

and Re(%) < 1+min {Re(ν′1), Re(ξ −$1 −$′1, Re(ξ −$′1 − ν1)} with |1/t| < 1. Then for <(p) ≥ 0,

the fractional integration formula shown below is valid:(
D
$1,$

′
1,ν1,ν

′
1,ξ

x,∞

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν

(
1

tγ
, s, a; p

)})
(x)

= x%−ξ+$1+$
′
1−1 Φ

(θ,θ′)
λ,ϑ;ν

(
1

xγ
, s, a; p

)
∗ 4Ψ3

[
(1, 1), (1− %− ν′1, γ), (1− %+ ξ −$1 −$′1, γ), (1− %+ ξ −$′1 − ν1, γ);

(1− %, γ), (1− %+ ξ −$1 −$′1 − ν1, γ), (1− %−$′1 − ν′1, γ);

1

xγ

]
.

3. Certain integral transforms

With the aid of the findings from the previous section, we will give severalextremely intriguing

theorems relating to the Beta, Laplace, and Whitaker transformations in this section. First, we would

like to define these transformations for this.

Definition 3. As is customary, the Euler-Beta transform [19]of the function f(z) is set forth by

B{f(z); a, b} =

∫ 1

0

za−1(1− z)b−1f(z) dz. (3.1)

Definition 4. As is customary, the Laplace transform (see, e.g., [19]) of the function f(z) is set forth

by

L{f(z); t} =

∫ ∞
0

e−tzf(z) dz. (Re(t) > 0) (3.2)

The following integral involving Whittaker function (see Mathai et al. [14, p. 79]):∫ ∞
0

tρ−1e−
1
2at Wκ,ν(at) dt = a−ρ

Γ( 1
2 ± ν + ρ)

Γ(1− κ+ ρ)
(Re(a) > 0, Re(ρ± ν) > −1

2
), (3.3)

is significant to the subject at hand, where Wκ,ν is the Whittaker function [16, p. 334].

In this portion, the following captivating results in the form of theorems shall be demonstrated.

These findings are put forward here without further justification because they follow directly from the

definitions (3.1), (3.2), (3.3)and Theorems 1 to 4.
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Theorem 5. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C\Z−0 such that Re(ξ) > 0

and Re(%) > max {0, Re($1 +$′1 + ν1 − ξ), Re($′1 − ν′1)} with |t| < 1. Then for <(p) ≥ 0, the

Beta-transform formula shown below is valid:

B
{(
I
$1,$

′
1,ν1,ν

′
1,ξ

0,x

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν ((tz)γ , s, a; p)

})
(x) : l,m

}
= x%+ξ−$1−$′

1−1 Γ(m) Φ
(θ,θ′)
λ,ϑ;ν (xγ , s, a; p)

∗ 5Ψ4

[
(1, 1), (l, γ), (%, γ), (%+ ξ −$1 −$′1 − ν1, γ), (%+ ν′1 −$′1, γ);

(l +m, γ), (%+ ν′1, γ), (%+ ξ −$1 −$′1, γ), (%+ ξ −$′1 − ν1 + γ, γ);
xγ

]
.

Theorem 6. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C\Z−0 such that Re(ξ) >

0 and Re(%) < 1 + min {Re(−ν1), Re($1 +$′1 − ξ), Re($1 + ν′1 − ξ)} with |1/t| < 1. Then for

<(p) ≥ 0, the Beta-transform formula shown below is valid:

B
{(
I
$1,$

′
1,ν1,ν

′
1,ξ

x,∞

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν

((z
t

)γ
, s, a; p

)})
(x) : l,m

}
= x%+ξ−$1−$′

1−1 Γ(m) Φ
(θ,θ′)
λ,ϑ;ν

(
1

xγ
, s, a; p

)
∗ 5Ψ4

[ (1, 1), (l, γ), (1− %− ν1, γ),

(l +m, γ), (1− %, γ),

(1− %− ξ +$1 +$′1, γ), (1− %− ξ +$1 + ν′1, γ);

(1− %− ξ +$1 +$′1 + ν′1, γ), (1− %+$1 − ν1, γ);

1

xγ

]
.

Theorem 7. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C\Z−0 such that Re(ξ) > 0

and Re(%) > max {0, Re(ξ −$1 −$′1 − ν′1), Re(ν1 −$1)} with |t| < 1. Then for <(p) ≥ 0, the

Beta-transform formula shown below is valid:

B
{(
D
$1,$

′
1,ν1,ν

′
1,ξ

0,x

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν ((tz)γ), s, a; p

})
(x) : l,m

}
= x%−ξ+$1+$

′
1−1 Γ(m) Φ

(θ,θ′)
λ,ϑ;ν (xγ , s, a; p)

∗ 5Ψ4

[
(1, 1), (l, γ), (%, γ), (%− ξ +$1 +$′1 + ν′1, γ), (%− ν1 +$1, γ);

(l +m, γ), (%− ν1, γ), (%− ξ +$1 +$′1, γ), (%− ξ +$1 + ν′1 + γ, γ);
xγ

]
.

Theorem 8. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C\Z−0 such that Re(ξ) > 0

and Re(%) < 1+min {Re(ν′1), Re(ξ −$1 −$′1, Re(ξ −$′1 − ν1)} with |1/t| < 1. Then for <(p) ≥ 0,

the Beta-transform formula shown below is valid:

B
{(
D
$1,$

′
1,ν1,ν

′
1,ξ

x,∞

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν

((z
t

)γ
, s, a; p

)})
(x) : l,m

}
= x%−ξ+$1+$

′
1−1 Γ(m) Φ

(θ,θ′)
λ,ϑ;ν

(
1

xγ
, s, a; p

)
∗ 5Ψ4

[ (1, 1), (l, γ), (1− %− ν′1, γ),

(1− %, γ), (1− %+ ξ −$1 −$′1 − ν1, γ),
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(1− %+ ξ −$1 −$′1, γ), (1− %+ ξ −$′1 − ν1, γ);

(l +m, γ), (1− %−$′1 − ν′1, γ);

1

xγ

]
.

Theorem 9. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C\Z−0 such that Re(ξ) > 0

and Re(%) > max {0, Re($1 +$′1 + ν1 − ξ), Re($′1 − ν′1)} with |t| < 1 . Then for <(p) ≥ 0, the

Laplace-transform formula shown below is valid:

L
{
zl−1

(
I
$1,$

′
1,ν1,ν

′
1,ξ

0,x

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν ((tz)γ), s, a; p

})
(x)
}

=
x%+ξ−$1−$′

1−1

sl
Φ

(θ,θ′)
λ,ϑ;ν

((x
s

)γ
, s, a; p

)
∗ 5Ψ3

[
(1, 1), (l, γ), (%, γ), (%+ ξ −$1 −$′1 − ν1, γ), (%+ ν′1 −$′1, γ);

(%+ ν′1, γ), (%+ ξ −$1 −$′1, γ), (%+ ξ −$′1 − ν1, γ);

(x
s

)γ]
.

Theorem 10. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C \ Z−0 such that

Re(ξ) > 0 and Re(%) < 1 + min {Re(−ν1), Re($1 +$′1 − ξ), Re($1 + ν′1 − ξ)} with |1/t| < 1.

Then for <(p) ≥ 0, the Laplace-transform formula shown below is valid:

L
{
zl−1

(
I
$1,$

′
1,ν1,ν

′
1,ξ

x,∞

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν

((z
t

)γ
, s, a; p

)})
(x)
}

=
x%+ξ−$1−$′

1−1

sl
Φ

(θ,θ′)
λ,ϑ;ν

((
1

xs

)γ
, s, a; p

)
∗ 5Ψ3

[ (1, 1), (l, γ), (1− %− ν1, γ), (1− %− ξ +$1 +$′1, γ),

(1− %, γ), (1− %− ξ +$1 +$′1 + ν′1, γ),

(1− %− ξ +$1 + ν′1, γ);

(1− %+$1 − ν1, γ);

(
1

xs

)γ ]
.

Theorem 11. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C \ Z−0 such that

Re(ξ) > 0 and Re(%) > max {0, Re(ξ −$1 −$′1 − ν′1), Re(ν1 −$1)} with |t| < 1 . Then for

<(p) ≥ 0, the Laplace-transform formula shown below is valid:

L
{
zl−1

(
D
$1,$

′
1,ν1,ν

′
1,ξ

0,x

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν ((tz)γ , s, a; p)

})
(x) :

}
=
x%−ξ+$1+$

′
1−1

sl
Φ

(θ,θ′)
λ,ϑ;ν

((x
s

)γ
, s, a; p

)
∗ 5Ψ3

[
(1, 1), (l, γ), (%, γ), (%− ξ +$1 +$′1 + ν′1, γ), (%− ν1 +$1, γ);

(%− ν1, γ), (%− ξ +$1 +$′1, γ), (%− ξ +$1 + ν′1, γ);

(x
s

)γ]
.

Theorem 12. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C \ Z−0 such that

Re(ξ) > 0 and Re(%) < 1 + min {Re(ν′1), Re(ξ −$1 −$′1, Re(ξ −$′1 − ν1)} with |1/t| < 1. Then

for <(p) ≥ 0, the Laplace-transform formula shown below is valid:

L
{
zl−1

(
D
$1,$

′
1,ν1,ν

′
1,ξ

x,∞

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν

((z
t

)γ
, s, a; p

)})
(x)
}

=
x%−ξ+$1+$

′
1−1

sl
Φ

(θ,θ′)
λ,ϑ;ν

((
1

xs

)γ
, s, a; p

)
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∗ 5Ψ3

[ (1, 1), (l, γ), (1− %− ν′1, γ),

(1− %, γ), (1− %+ ξ −$1 −$′1 − ν1, γ),

(1− %+ ξ −$1 −$′1, γ), (1− %+ ξ −$′1 − ν1, γ);

(1− %−$′1 − ν′1, γ);

(
1

xs

)γ ]
.

Theorem 13. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C \ Z−0 such that

Re(ξ) > 0 and Re(%) > max {0, Re($1 +$′1 + ν1 − ξ), Re($′1 − ν′1)} with |t| < 1 . Then for

<(p) ≥ 0, the Laplace-transform formula shown below is valid:∫ ∞
0

zl−1e−
1
2 δz Wτ,ς(δz)

{(
I
$1,$

′
1,ν1,ν

′
1,ξ

0,x

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν ((wtz)γ), s, a; p

})
(x)
}

dz

=
x%+ξ−$1−$′

1−1

δl
Φ

(θ,θ′)
λ,ϑ;ν

((wx
δ

)γ
, s, a; p

)
∗ 6Ψ4

[ (1, 1), ( 1
2 + ζ + l, γ), ( 1

2 − ζ + l, γ),

( 1
2 − τ + l, γ), (%+ ν′1, γ),

(%, γ), (%+ ξ −$1 −$′1 − ν1, γ), (%+ ν′1 −$′1, γ);

(%+ ξ −$1 −$′1, γ), (%+ ξ −$′1 − ν1, γ);

(wx
δ

)γ ]
.

Theorem 14. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C \ Z−0 such that

Re(ξ) > 0 and Re(%) < 1 + min {Re(−ν1), Re($1 +$′1 − ξ), Re($1 + ν′1 − ξ)} with |1/t| < 1.

Then for <(p) ≥ 0, the integral formula shown below is valid:∫ ∞
0

zl−1e−
1
2 δz Wτ,ς(δz)

{(
I
$1,$

′
1,ν1,ν

′
1,ξ

x,∞

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν

((wz
t

)γ
, s, a; p

)})
(x)
}

dz

=
x%+ξ−$1−$′

1−1

δl
Φ

(θ,θ′)
λ,ϑ;ν

(( w
xδ

)γ
, s, a; p

)
∗ 6Ψ4

[ (1, 1), ( 1
2 + ζ + l, γ), ( 1

2 − ζ + l, γ), (1− %− ν1, γ),

( 1
2 − τ + l, γ), (1− %, γ),

(1− %− ξ +$1 +$′1, γ), (1− %− ξ +$1 + ν′1, γ);

(1− %− ξ +$1 +$′1 + ν′1, γ), (1− %+$1 − ν1, γ);

( w
xδ

)γ ]
.

Theorem 15. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C\Z−0 such that Re(ξ) >

0 and Re(%) > max {0, Re(ξ −$1 −$′1 − ν′1), Re(ν1 −$1)} with |t| < 1. Then for <(p) ≥ 0, the

integral formula shown below is valid:∫ ∞
0

zl−1e−
1
2 δz Wτ,ς(δz)

{(
D
$1,$

′
1,ν1,ν

′
1,ξ

0,x

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν ((wtz)γ), s, a; p

})
(x)
}

=
x%−ξ+$1+$

′
1−1

δl
Φ

(θ,θ′)
λ,ϑ;ν (

(wx
δ

)γ
, s, a; p)

∗ 6Ψ4

[ (1, 1), ( 1
2 + ζ + l, γ), ( 1

2 − ζ + l, γ)

( 1
2 − τ + l, γ), (%− ν1, γ),

(%+ γ, γ), (%− ξ +$1 +$′1 + ν′1, γ), (%− ν1 +$1, γ);

(%− ξ +$1 +$′1, γ), (%− ξ +$1 + ν′1, γ)

(wx
δ

)γ ]
.
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Theorem 16. Let $1, $
′
1, ν1, ν

′
1, ξ, %, p, λ, ϑ, s ∈ C with γ ∈ R+ and ν, a ∈ C \ Z−0 such that

Re(ξ) > 0 and Re(%) < 1 + min {Re(ν′1), Re(ξ −$1 −$′1, Re(ξ −$′1 − ν1)} with |1/t| < 1. Then

for <(p) ≥ 0, the integral formula shown below is valid:∫ ∞
0

zl−1e−
1
2 δz Wτ,ς(δz)

{(
D
$1,$

′
1,ν1,ν

′
1,ξ

x,∞

{
t%−1 Φ

(θ,θ′)
λ,ϑ;ν

((wz
t

)γ
, s, a; p

)})
(x)
}

=
x%−ξ+$1+$

′
1−1

δl
Φ

(θ,θ′)
λ,ϑ;ν

(( w
xδ

)γ
, s, a; p

)
∗ 6Ψ4

[ (1, 1), ( 1
2 + ζ + l, γ), ( 1

2 − ζ + l, γ), (1− %− ν′1, γ),

( 1
2 − τ + l, γ), (1− %, γ),

(1− %+ ξ −$1 −$′1, γ), (1− %+ ξ −$′1 − ν1, γ)p;

(1− %+ ξ −$1 −$′1 − ν1, γ), (1− %−$′1 − ν′1, γ);

( w
xδ

)γ ]
.

4. Concluding Remarks and Observations

In the current study, we have found the composition formulas for the generalized Marichev-Saigo-

Maeda fractional integrals and differential operators (1.1), (1.2), (1.3) and (1.4) involving the p–

extended Hurwitz-Lerch zeta function Φ
(θ,θ′)
λ,ϑ;ν (z, s, a; p) in terms of the Hadamard product (1.8) of

the p–extended Hurwitz-Lerch zeta function Φ
(θ,θ′)
λ,ϑ;ν (z, s, a; p)(z, s, a) and the Fox–Wright function

rΨs(z) employing the Hadamard product (or convolution) of two analytic functions. Additionally, we

have derived some image formulas in connection with integral transformations such asthe Euler-Beta,

Laplace, and Whittaker transforms. Then, as special cases, we can construct as corollaries the specific

image formulas for the Erdélyi-Kober(E-K), Riemann-Liouville(R-L), and Saigo’s fractional integral

and differential operators. We have left this as an exercise for the readers. The results obtained in

this paper are assumed to be have applications in various field of Physical and Engineering Sciences.

Another application in real world problems can be developed in recents papers[22, 23]
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Abstract

We establish a novel family of Kumaraswamy-X probability distri-
butions in the present investigation. We discussed the Kumaraswamy-
Exponential univariate probability distribution. The new distribution
with three parameters possesses density function with unimodal and re-
verse J-shape and hazard rate function of bathtub shaped. We study
various statistical properties for it and derive the expressions for its den-
sity function, distribution function, survival and hazard rate function,
Probability weighted Moments, lth moment, moment generating func-
tion, quantile function and Shannon entropy. For the derived distribution
order statistics is also discussed. The parameters are estimated using
the maximum likelihood estimation approach, and the performance of the
estimators was evaluated using a Monte Carlo simulation. Through ex-
tensive Monte Carlo simulations and comparative analyses, we assess the
performance of the Kumaraswamy-X distribution against other common
probability distributions used in engineering contexts. When we apply
it to real datasets, it offers a more suitable fit than other existing dis-
tributions. We explore the characteristics and potential applications of
the Kumaraswamy-X distribution in the context of engineering problems
through a comprehensive simulation-based investigation.

Keywords: T-X family of distributions, Probability weighted Moments, Shan-
non entropy, Order Statistics, Monte Carlo simulation, Maximum likelihood
estimation.
AMS 2000 Subject Code: 62F10, 62F03.
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2

1 Introduction

In probability distribution theory, the selection of a specific probability dis-
tribution for modeling real-world phenomena depends on the flexibility of the
distribution. It is practice to apply probability distributions that better match
the set of data that is available, instead of transforming the current data col-
lected. Because of this, there have been numerous recent attempts to guarantee
that the classical probability distributions are updated and developed, since
this could boost their adaptability and improve their ability to predict real-
world data sets. The Kumaraswamy-X probability distribution, an extension of
the well-known Kumaraswamy distribution, has application in modeling a wide
range of lifetime problems. This study explores the characteristics and potential
applications of the Kumaraswamy-X distribution in the context of engineering
problems through a comprehensive simulation-based investigation.

The concept of creating customised distributions is still a hot topic in the lit-
erature today. Several approaches could be used to extend an existing standard
distribution. For instance, generalization, which entails leveraging the widely
available generalized family of distributions, can boost a distribution’s adapt-
ability. To generalize the distribution an additional shape parameter(s) may be
added to the family of distributions. These extra shape parameter(s) are re-
sponsible for altering the tail weight of the resulting compound distribution and
introducing skewness. The extension of classical distributions is a long-standing
practice and an important issue in statistics, just like many other real-world
issues.

The distributions could be used in different domains, like engineering, eco-
nomics, industrial and physical fields, among a great number of others. To
increase the flexibility of traditional distributions, statisticians developed meth-
ods for creating new probability distribution families. In many relevant fields,
these improvements give practitioners more flexible model options for results
that fit them better and are ultimately more accurate. For instance, some
of the well-known families are the beta-G family (B-G) by Eugene et al. [8],
Kumaraswamy-G family (Kw-G) by Cordeiro and de Castro [6], McDonald-G
family (Mc-G) by Alexander et al. [2], T-X family introduced by Alzaatreh et
al. [4], gamma-X family by Alzaatreh et al. [3], Exponentiated T-X family by
Alzaghal et al. [5], Logistic-X family by Tahir et al. [15], new Weibull-X family
by Ahmad et al. [1] and some new member of T-X family by Jamal and Nasir
[10] among others. A new family of Distribution with application on two real
datasets on survival problem by Modi et al. [12]. Power Exponentiated Family
of Distributions proposed by Modi [11]. In this article, we have proposed a
new lifetime family of distributions which can be used to fit data in different
fields. The paper is organized as follows. In Section 2, we define T-X family
of distributions. Kumaraswamy distribution and Exponential distribution in
Section 3 and Section 4 respectively. In Section 5, we provide the proba-
bility density function (pdf) and the cumulative distribution function (cdf) of
the Kumaraswamy-Exponential distribution. In Section 6, we examine the
survival function and hazard rate function for the new distribution. Formulas

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

339 Modi et al 338-357



3

for moments, moment generating function and probability weighted moments
of the Kumaraswamy-Exponential distribution (KED) are given in Section 7,
Section 8 & Section 9 respectively. Mean, median and mode are discussed in
Section 10 and quantile function in Section 11. The Simulation study and
Shannon entropy in Section 12 & Section 13 respectively. The distribution
of the order statistics for the new distribution are discussed in Section 14. In
Section 15, we estimate its parameters using the method of maximum likeli-
hood estimation. In Section 16, we show the application of Kumaraswamy-
Exponential distribution on two real datasets and compare it with some well
known distributions. We need the following Lemmas to complete the deriva-
tions:

Lemma 1.1. From Gradshteyn and Ryzhik [9], Equation (1.110), Page 25. If
q is a positive real non integer and |z| ≤ 1, then by binomial series expansion
we have:

(1− z)
Υ−1

=

∞∑
p=0

(−1)
p

(
Υ− 1

p

)
zp.

Lemma 1.2. From Prudnikov et al. [14], Equation (18), Page 241, the integral
expression is defined as follows:∫

zζ ln z dz = zζ+1

[
ln z

ζ + 1
− 1

(ζ + 1)
2

]
.

Lemma 1.3. From Gradshteyn and Ryzhik [9], Equation (3.383.1), Page 347.
For ReΩ > 0 , Reς > 0

κ∫
0

xΩ−1 (κ− x)
ς−1

eβx dx = B (ς,Ω)κς+Ω−1
1F1 (Ω; ς +Ω;βκ) .

Lemma 1.4. From Gradshteyn and Ryzhik [9], Equation (2.729.1), Page 239,
the integral expression is defined as follows:∫

xξ ln (a+ bx) dx

=
1

ξ + 1

[
xξ+1 − (−a)

ξ+1

bξ+1

]
ln (a+ bx) +

1

ξ + 1

ξ+1∑
k=1

(−1)
k
xξ−k+2ak−1

(ξ − k + 2) bk−1
.

2 T-X family of distributions

The cumulative distribution function (cdf) of the T-X family introduced by
Alzaatreh et al. [4], is given by U{W (Q(x))}. Let T be a continuous random
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variable (r.v.) with pdf u(t) defined on [0, 1], can be defined as:

GX(x) =

W (QX(x))∫
0

u(t) dt,

where Q is the cdf of X, U(t) is the cdf of a r.v. T and W is a non-decreasing
function having the support of U as its range defined on [0, 1]. Thus, we have:

GX(x) = U [− log (1−QX(x))] x > 0, (2.1)

gX(x) =
qX(x)

(1−QX(x))
u [− log (1−QX(x))] . (2.2)

Thus substituting the different cdf Q(x)and pdf q(x), we can obtain a number
of distributions.

3 Kumaraswamy distribution

A continuous random variable X is said to have Kumaraswamy distribution, if
its pdf fX(x) and cdf FX(x) are, respectively, given by:

f(x) = κbxκ−1 (1− xκ)
b−1

, 0 ≤ x ≤ 1, b > 0, κ > 0 (3.1)

and
F (x) = 1− (1− xκ)

b
. (3.2)

4 Exponential distribution

A continuous random variable X is said to have Exponential distribution, if its
pdf fX(x) and cdf FX(x) are, respectively, given by:

f(x) = ηe−ηx, x ≥ 0, η > 0, (4.1)

and
F (x) = 1− e−ηx. (4.2)

5 Kumaraswamy - Exponential distribution

Using Kumaraswamy distribution in T-X family, we obtain the Kumaraswamy-
X family of distributions:

GX(x) = 1− [1− (− log (1−Q (x)))
κ
]
b
.

Using cdf given in equation (4.2), we obtain cdf of Kumaraswamy - Exponential
distribution as:

GX(x) = 1− [1− (ηx)
κ
]
b
. (5.1)
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Using Kumaraswamy distribution in T-X family density given in equation (2.2),
we obtain the pdf of Kumaraswamy-X family of distributions:

gX(x) =
q (x)

1−Q (x)
κb (− log (1−Q (x)))

κ−1
[1− (− log (1−Q (x)))

κ
]
b−1

.

Using pdf in equation (4.1) and cdf in equation (4.2), we obtain pdf of Ku-
maraswamy - Exponential distribution

gX(x) = ηκκbxκ−1 [1− (ηx)
κ
]
b−1

, (5.2)

Using Lemma 1, in the above expression then we have

gX(x) = ηκκbxκ−1
∞∑
v=0

(−1)
v

(
b− 1
v

)
(ηx)

vκ
x > 0, b > 0, η > 0, κ > 0.

(5.3)

Figure 1: Density function (Left) and distribution function (Right) graphs of
Kumaraswamy - Exponential distribution for different values of its parameters
η, b, κ.

6 Hazard Rate Function and Survival Function

To study the life phenomena we can use hazard rate function as an important
characteristic. Using the pdf defined in equation (5.2), we define h(x) as:

h (x) =
ηκκbxκ−1

1− (ηx)
κ , (6.1)

also, its survival function obtained as:

S (x) = [1− (ηx)
κ
]
b
. (6.2)
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Figure 2: Hazard rate function (Left) and survival function (Right) graphs of
Kumaraswamy - Exponential distribution for different values of its parameters
η, b, κ.

7 Moments

The lth moment of a random variable X with pdf defined in equation (5.2), can
be calculated as:

µ
′

l = E(xl) = ηκκb

1∫
0

xl+κ−1
∞∑
v=0

(−1)
v

(
b− 1
v

)
(ηx)

vκ
dx,

= κb

∞∑
v=0

(−1)
v

(
b− 1
v

)
ηvκ+κ

1∫
0

xl+vκ+κ−1dx.

On integration, we obtain

µ
′

l = κb
∞∑
v=0

(−1)
v

(
b− 1
v

)
ηvκ+κ 1

l + vκ+ κ
. (7.1)
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8 Moment Generating Function

The mgf for the pdf defined in equation (5.2), is given by:

MX (t) = E(etx) =

∞∫
0

etxf(x)dx

= ηκκb

1∫
0

etx.xκ−1
∞∑
v=0

(−1)
v

(
b− 1
v

)
(ηx)

vκ
dx

= κb
∞∑
v=0

(−1)
v

(
b− 1
v

)
ηvκ+κ

1∫
0

etxxvκ+κ−1dx

Using Lemma 3, in the above expression then we have

E
(
etx
)
= κb

∞∑
v=0

(−1)
v

(
b− 1
v

)
×

ηvκ+κB (1, κ+ vκ) (1)
κ+vκ

.1F1 (κ+ vκ; 1 + κ+ vκ; t.1)

E
(
etx
)
= κb

∞∑
v=0

(−1)
v

(
b− 1
v

)
ηvκ+κ

(κ+ vκ)
.1F1 (κ+ vκ; 1 + κ+ vκ; t) (8.1)

9 Probability Weighted Moments

For the pdf of the proposed distribution, corresponding pth probability weighted
moment is given by:

ρ = E
(
xp (G (x))

ϕ
)
=

1∫
0

xp (G (x))
ϕ
.g (x) dx,

= κbηκ
1∫

0

xp+κ−1
(
1− [1− (ηx)

κ
]
b
)ϕ

. [1− (ηx)
κ
]
b−1

dx,

using Lemma 1, in the above expression then we have

= ηκκb
∞∑
t=0

(−1)
t

(
ϕ
t

) 1∫
0

xp+κ−1 [1− (ηx)
κ
]
bt+b−1

dx,

again we apply Lemma 1, then we obtained

= κb
∞∑
t=0

∞∑
u=0

(−1)
t+u

(
ϕ
t

)(
bt+ b− 1

u

)
ηκ+κu

1∫
0

xp+κ+κu−1dx.
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ρ = κb
∞∑
t=0

∞∑
u=0

(−1)
t+u

(
ϕ
t

)(
bt+ b− 1

u

)
ηκ+κu

p+ κ+ κu
. (9.1)

10 Mean, Median and Mode

The mean of a probability distribution is defined as:

E(x) =

∞∫
0

x.g (x) dx

E (x) = κb

∞∑
d=0

(−1)
d

(
b− 1
d

)
ηdκ+κ 1

1 + dκ+ κ
. (10.1)

The median of the proposed distribution is given by

GX(M) =
1

2
and M =

1

η

[
1− {0.5}1/b

]1/κ
. (10.2)

The mode of the proposed distribution given in equation (5.2), can be obtained
as

gX(x) = ηκκbxκ−1 [1− (ηx)
κ
]
b−1

g′(x) = g (x) .

[
κ− 1

x
− ηκκxκ−1 (b− 1)

1− (ηx)
κ

]
(10.3)

Thus g(x) has mode at x = 1
η

[
κ−1
bκ−1

]1/κ
with g(0) = 0, g(∞) = ∞. Clearly

g′(x) > 0, ∀b, κ, η this shows that g(x) is a growing function of x.

11 Quantile Function

Using equation (5.1) the quantile function of proposed distribution is given by:

Q (x) =
1

η

[
1− {1− U}1/b

]1/κ
. (11.1)

where for interval [0,1], U follows the Uniform distribution.

12 Simulation Study

To judge the MLEs estimators performance for a finite sample of size n, here
we carry out a Monte Carlo simulation analysis. To explore the average bi-
ases (ABs), root mean square errors (RMSEs), mean square errors (MSEs) and
maximum likelihood estimates (MLEs), a simulation study based on the Ku-
maraswamy - Exponential distribution is conducted for the distribution param-
eters η, b and κ. Multiple simulations with different sample sizes and parameter
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settings were used to conduct the simulation experiment. We use the quantile
function to produce random samples for the KED. The simulation study was
performed for sample sizes n = 50, 100, ..., 1500 each repeated 1500 times, for
the following parameter values η = 2.2, b = 3.9, κ = 4.8.
The MLEs of the KE model are calculated using the optim ( ) R-function
with method = “SANN ”. For every set of simulated data, say, (estimates) for
i = 1, 2, . . . , 1500, the AB, MSE, and RMSE of the parameters were computed
for η = 2.2, b = 3.9, κ = 4.8. For different sample sizes, the AB, MLE and
RMSE of the parameters, η, b and κ are shown. These results lead us to the
conclusion that the MLEs are best to estimate the model parameters, with more
stability and closer to the genuine values. Table 1 and Fig. 3 demonstrate that
the RMSE, AB, and MSE drop as sample size grows as would be predicted. The
MLEs of the model’s parameters are also quite near to their actual values. Thus
even small samples can be fitted with derived distribution with better precision.

Table 1: Results obtained for Monte Carlo simulation of MLE, AB and RMSE
for the KE Distribution.

Para. n MLE AB RMSE

η

50 0.7829606 -1.4170393 1.518000
100 0.8087420 -1.3912579 1.555102
300 1.0488439 -1.1511561 1.544286
600 1.5011235 -0.6988764 1.269147
900 1.8463882 -0.3536118 0.973826
1200 2.0019255 -0.1980744 0.792184
1500 2.1223060 -0.0776939 0.615142

b

50 1.009512 -2.8904885 3.968965
100 3.642784 -0.2572159 5.646243
300 5.213961 1.3139606 5.896080
600 5.129874 1.2298743 4.692855
900 4.670879 0.7708793 3.495491
1200 4.528949 0.6289491 2.829144
1500 4.269290 0.3692901 2.041111

κ

50 13.287630 8.48763013 10.84302
100 11.627627 6.82762727 9.0838924
300 7.172703 2.37270337 3.9406621
600 5.465790 0.66579011 2.0529831
900 4.919511 0.11951053 1.2649680
1200 4.738959 -0.06104107 0.9195160
1500 4.633040 -0.16696001 0.7118000

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

346 Modi et al 338-357



10

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

0 500 1000 1500

0
40

80
12

0

Plot of MSE vs n

n

M
S

E

*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

+

+

+

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + +

o

*
+

η =2.2 
b=3.9
κ =4.8

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

0 500 1000 1500

0
2

4
6

8

Plot of bias vs n

n

bi
as

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

+
+

+
+ +

+ + + + + + + + + + + + + + + + + + + + + + + + +

o

*
+

η =2.2 
b=3.9
κ =4.8

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

0 500 1000 1500

0
2

4
6

8

Plot of RMSE vs n

n

R
M

S
E

*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

+
+

+
+ +

+ + + + + + + + + + + + + + + + + + + + + + + + +

o

*
+

η =2.2 
b=3.9
κ =4.8

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

0 500 1000 1500

0
4

8
12

Plot of MLE vs n

n
M

LE

*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

+
+

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +

o

*
+

η =2.2 
b=3.9
κ =4.8

Figure 3: Plots for MLE, bias, MSE, and RMSE for Kumaraswamy - Exponen-
tial distribution for parameter values η = 2.2, b = 3.9, κ = 4.8.

13 Shannon Entropy

The entropy of a random variable is a measure of deviation of the uncertainty.
The Shannon entropy defined as:

E [− ln gX(x)] = −
∞∫
0

ln gX(x).gX(x)dx

Using pdf defined in equation (5.2), we get

E [− ln gX(x)] =

− ηκκb

1∫
0

ln
[
ηκκbxκ−1 [1− (ηx)

κ
]
b−1
]
xκ−1 [1− (ηx)

κ
]
b−1

dx

= −ηκκb ln (ηκκb)

1∫
0

xκ−1 [1− (ηx)
κ
]
b−1

dx− ηκκb (κ− 1)×

1∫
0

ln (x) .xκ−1 [1− (ηx)
κ
]
b−1

dx− ηκκb (b− 1)×

1∫
0

ln (1− (ηx)
κ
) .xκ−1 [1− (ηx)

κ
]
b−1

dx
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= I1 + I2 + I3. (13.1)

where,

I1 = −ηκκb ln (ηκκb)

1∫
0

xκ−1 [1− (ηx)
κ
]
b−1

dx,

= −κb ln (ηκκb)

∞∑
i=0

(−1)
i

(
b− 1
i

)
ηκ+iκ

1∫
0

xκ+iκ−1dx

I1 = −κb ln (ηκκb)
∞∑
i=0

(−1)
i

(
b− 1
i

)
ηκ+iκ

κ+ iκ
.

I2 = −ηκκb (κ− 1)

1∫
0

ln (x) .xκ−1 [1− (ηx)
κ
]
b−1

dx,

putting 1− (ηx)
κ
= t ⇒ −κηκxκ−1dx = dt and x = 1

η (1− t)
1/κ , we get

I2 = −ηκκb (κ− 1)

1∫
1−ηκ

ln

 (1− t)
1/κ

η

 tb−1 dt

ηκκ
,

= −b (κ− 1)

1∫
1−ηκ

[
ln

(
1

η

)
+

1

κ
ln (1− t)

]
tb−1dt,

= −b (κ− 1) ln

(
1

η

) 1∫
1−ηκ

tb−1dt− b
(κ− 1)

κ

1∫
1−ηκ

ln (1− t) .tb−1dt,

by using Lemma 4, we found that

I2 = − (κ− 1) ln

(
1

η

)[
1− (1− ηκ)

b
]
− b

(κ− 1)

κb[(
tb − 1

)
ln (1− t)−

b∑
g=1

tb−g+1

(b− g + 1)

]1
1−ηκ

(13.2)

= − (κ− 1) ln

(
1

η

)[
1− (1− ηκ)

b
]
− (κ− 1)

κ[
−

b∑
g=1

1

(b− g + 1)
−
(
(1− ηκ)

b − 1
)
ln (ηκ) +

b∑
g=1

(1− ηκ)
b−g+1

(b− g + 1)

]
.
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I3 = −ηκκb (b− 1)

1∫
0

ln (1− (ηx)
κ
) .xκ−1 [1− (ηx)

κ
]
b−1

dx,

putting 1− (ηx)
κ
= t ⇒ −κηκxκ−1dx = dt and x = 1

η (1− t)
1/κ , we get

I3 = −b (b− 1)

1∫
1−ηκ

ln (t) .tb−1dt,

by using Lemma 2, we found that

I3 = − (b− 1)

[
tb ln (t)− tb

b

]1
1−ηκ

= (b− 1)

[
1

b
+ (1− ηκ)

b
ln (1− ηκ)− (1− ηκ)

b

b

]
.

putting values of I1, I2 and I3 in equation (13.1) we can obtain required result.

14 Order statistics

In this section, we develop the distribution of the qth order statistic of the
Kumaraswamy-Exponential distribution (KED). Let X(1:n) ≤ . . . ≤ X(r:n) ≤
. . . ≤ X(n:n) represents the ordered sample of n random variables for KED. The

distribution of the qth order statistics Xq:p, q = 1, 2, . . . , p can be defined as:

gq:p(x) = Cq:p [G(x; η, b, κ)]
q−1

g(x; η, b, κ) [1−G(x; η, b, κ)]
p−q

x > 0 (14.1)

where G(.) and g(.) are given by equation (5.1) and equation (5.2) respectively,
thus

Cq:p (x) =
p!

(q)! (p− q)!
.

Thus, Using binomial expansion given in Lemma 1, we get

gq:p(x) = Cq:p

∞∑
k=0

(−1)
k

(
p− q
k

)
[G(x; η, b, κ)]

q+k−1
g(x; η, b, κ),

gq:p(x) = Cq:p

∞∑
k=0

(−1)
k

(
p− q
k

)[
1− [1− (ηx)

κ
]
b
]q+k−1

×

ηκκbxκ−1 [1− (ηx)
κ
]
b−1

,
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now using Lemma 1, we obtained

gq:p(x) = Cq:p

∞∑
k=0

∞∑
u=0

(−1)
k+u

(
p− q
k

)(
q + k − 1

u

)
×

ηκκbxκ−1 [1− (ηx)
κ
]
b+bu−1

. (14.2)

It’s sth moment can be calculated as:

E(xs) = Cq:p

∞∑
w=0

∞∑
u=0

(−1)
w+u

(
p− q
w

)(
q + w − 1

u

)
×

ηκκb.

1∫
0

xκ+s−1 [1− (ηx)
κ
]
b+bu−1

dx,

Again applying Lemma 1, we have

E(xs) = Cq:p

∞∑
w=0

∞∑
u=0

∞∑
r=0

(−1)
w+u+r

(
p− q
w

)(
q + w − 1

u

)
×

(
b+ bu− 1

r

)
ηκ+κrκb.

1∫
0

xκ+κr+s−1dx,

= Cq:p

∞∑
w=0

∞∑
u=0

∞∑
r=0

(−1)
w+u+r

(
p− q
w

)(
q + w − 1

u

)
×(

b+ bu− 1
r

)
ηκ+κrκb

κ+ κr + s
(14.3)

15 Maximum Likelihood Estimators

Let X is a random variable having the pdf of Kumaraswamy-Exponential dis-
tribution defined as:

gX(x) = ηκκbxκ−1 [1− (ηx)
κ
]
b−1

.

Then its log-likelihood function can be written as:

L(x; η, b, κ) = n lnκ+ nκ ln η + n ln b+ (κ− 1)
n∑

i=1

ln (xi) + (b− 1)

n∑
i=1

ln (1− (ηxi)
κ
) . (15.1)
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Thus the non-linear normal equations are given as follows:

∂L(x; η, b, κ)

∂η
=

nκ

η
− (b− 1)

n∑
i=1

κηκ−1xκ
i

(1− (ηxi)
κ
)
. (15.2)

∂L(x; η, b, κ)

∂κ
= n ln η +

n

κ
+

n∑
i=1

ln (xi)− (b− 1)
n∑

i=1

ηκxκ
i ln (ηxi)

(1− (ηxi)
κ
)
. (15.3)

∂L(x; η, b, κ)

∂b
=

n

b
+

n∑
i=1

ln (1− (ηxi)
κ
). (15.4)

To find the estimate of the unknown parameters by using the maximum likeli-
hood method equate the equation (15.2) - equation (15.4) to zero and we can
obtain solution.

16 Application To Real Life Data

Now we apply the proposed Kumaraswamy-Exponential distribution on two
engineering data sets. We compare its flexibility with some pre-defined distri-
butions. To analyse the present study, we obtain the results using R software.
Following distributions are considered for discussion:
Exponentiated Exponential Distribution

f(j) = rϖ
(
1− e−ϖ.j

)r−1
.e−ϖ.j

Exponentiated Weibull distribution

f(w) = aβσβwβ−1. exp
(
− (σw)

β
)(

1− exp
(
− (σw)

β
))a−1

Beta distribution

f(x) =
Γ (α+ b)

Γ (α) .Γ (b)
xα−1 (1− x)

b−1

Burr-XII exponential distribution

f(l) = cpϖ.
(
eϖl − 1

)c−1
eϖl

(
1 +

(
eϖl − 1

)c)−p−1

Gompertz distribution

f(x) = λ exp

[
αx− λ

α
(eαx − 1)

]
At α = 1% LOS assume the hypothesis as,
H0: The data fit the Kumaraswamy Exponential distribution
H1: The data do not fit the Kumaraswamy Exponential distribution
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Table 2: Table containing estimates and AIC values.

Distributions Estimates p-value D LL AIC

Kumaraswamy
exponential
distribution

η = 0.583923
0.1178 0.26605 -26.13379 58.26758b = 54.427161

κ = 1.596120

Beta distribution
α = 3.11202

0.1521 0.25378 -27.8813 59.7626
b = 21.81905

Exponentiated
Weibull distri-
bution

a = 9.388397
0.5196 0.18229 -32.83807 71.67614β = 0.975218

σ = 24.898336

Exponentiated
exponential
distribution

α = 13.82227
0.6835 0.16024 -3297643 69.95286

θ = 27.75196

Burr-XII expo-
nential distribu-
tion

c = 12.2957340
0.924 0.12272 -37.99018 81.98036p = 0.1133163

τ = 9.6519132

Data Set1: The data from Murthy et al. [13] representing of the breakdown
time of 20 mechanical parts. The records are:
0.085, 0.114, 0.068, 0.085, 0.086, 0.089, 0.098, 0.098, 0.114, 0.121, 0.115, 0.125,
0.131, 0.081, 0.149, 0.076, 0.160, 0.084, 0.485, 0.067.
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Figure 4: Plots of fitted Kumaraswamy Exponential distribution for breakdown
time data.

Plots of fitted KE distribution for breakdown time data are displayed in Fig-
ure 4. Box plot revels that data is positively skewed. The TTT plot in Figure
4 for data 1 has concave than convex shape which suggests that hazard shape
is upside-down bathtub (unimodal). The empirical visualization suggests that
the KE distribution provides an improved fit for the breakdown time data.

Data Set2: This data set referred from Dasgupta [7] for the 50 observations
with opening of 12 mm and sheet thickness of 3.15 mm by the drilling machine.
The records are:
0.32, 0.04, 0.02, 0.24, 0.08, 0.22, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08, 0.26, 0.24,
0.04, 0.14, 0.08, 0.32, 0.28, 0.14, 0.24, 0.26, 0.24, 0.22, 0.12, 0.18, 0.16, 0.06,
0.24, 0.14, 0.26, 0.16, 0.14, 0.16, 0.24, 0.16, 0.32, 0.18, 0.16, 0.12, 0.06, 0.02,
0.18, 0.22, 0.16, 0.06, 0.04, 0.14, 0.18, 0.16.

From Table 2 and Table 3, the Kumaraswamy-Exponential distribution has
the AIC with lowest value and greater log-likelihood value for three parameter
distribution, thus providing better fit than the Burr-XII exponential distribu-
tion, Exponentiated exponential distribution, Beta distribution, Exponentiated
Weibull distribution and Gompertz distribution. So, since p − value > α, we
suppose that data follows the Kumaraswamy-Exponential distribution and can-
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Table 3: Table containing estimates and AIC values.

Distributions Estimates p-value D LL AIC

Kumaraswamy
exponential
distribution

η = 1.011943
0.613 0.10726 -56.06933 118.13866b = 33.421670

κ = 2.099506

Burr-XII expo-
nential distribu-
tion

c = 1.991607
0.5666 0.1112 -56.12203 118.24406p = 17.947926

τ = 1.161502

Gompertz
distribution

λ = 1.590379
0.6522 0.10397 -57.07532 118.15064

α = 10.274716

Exponentiated
Weibull distri-
bution

a = 0.2970342
0.7083 0.09924 -57.53448 121.06896β = 4.9819583

σ = 3.8439353

not reject the null hypothesis.
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Figure 5: Plots of fitted Kumaraswamy Exponential distribution for drilling
machine data.

Plots of fitted KE distribution for drilling machine data are displayed in
Fig. 5. Box plot revels that data is normal. The TTT plot in Fig. 5 for
data 2 has a concave shape which suggests hrf is increasing. The empirical
visualization suggests that the KE distribution provides an improved fit for the
drilling machine data.

Conclusion

In this manuscript, we establish a new family of Kumaraswamy-X probability
distributions. Particularly, we developed the Kumaraswamy exponential distri-
bution’s cdf and pdf expressions. We have studied characteristic properties for
the proposed distribution. From density graph, we conclude the proposed dis-
tribution has reverse-J shape or unimodal. The graphs for survival and hazard
rate function for new distribution are also given. Further the mean, median
and mode are discussed. The formulae for the lth moment, probability weighted
moments and moment generating function are also derived. We derived the
Shannon entropy formula and the distribution of its qth order statistics for pro-
posed distribution. The MLE technique is used to estimate its parameters. We
measure the accuracy of the estimators for a finite sample of size n using a Monte
Carlo simulation analysis. The distribution is applied on two real datasets and
its efficiency measured with some existing distributions. It is clearly visible from
findings that the Kumaraswamy Exponential distribution exhibits a better fit
for the considered data sets. This study contributes to the expanding body of
knowledge on the Kumaraswamy-X probability distribution by offering insights
into its theoretical foundations and practical applications in engineering prob-
lems. The simulation-based evaluation highlights its potential to enhance the
accuracy and reliability of probabilistic modelling in various engineering disci-
plines, promoting its adoption as a valuable tool in engineering research and
practice.
Furthermore, the simulation study has demonstrated that the Kumaraswamy-X
distribution can provide a suitable alternative to other well-established distri-
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butions, offering a fresh perspective and potentially improving the accuracy of
predictive models. Its robust performance in various scenarios, as evidenced by
our study, suggests that it should be considered an essential and important tool
for the scientist and engineers.
Our future work will also focus on the determination of Bayesian estimators of
the proposed distribution. One aspect that will also be the focus of our atten-
tion will be the determination of the performance of estimators using various
estimation methods.
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The Mohand Transform Approach to Fractional

Integro-Differential Equations

Tharmalingam Gunasekar*, �; Prabakaran Raghavendran �

December 28, 2023

This research investigates specific classes of fractional integro-differential
equations using a straightforward fractional calculus technique. The employed
methodology yields a variety of compelling outcomes, including a generalized
version of the well-established classical Frobenius method. The approach pre-
sented in this study primarily relies on fundamental theorems concerning the
specific solutions of fractional integro-differential equations, utilizing the Mo-
hand transform and binomial series extension coefficients. Additionally, ad-
vanced techniques for solving fractional integro-differential equations effectively
are showcased.

Keywords: Riemann-Liouville (RL) fractional integrals; fractional-order dif-
ferential equation; gamma function; Mittag-Leffler function; Wright function;
Mohand transform of the fractional derivative

2010 Subject Classification: 26A33; 31A10; 33C10; 34A05; 35K37.

1 Introduction

Fractional calculus, an exploration of non-integer order integrals and deriva-
tives, has garnered significant attention in mathematics owing to its diverse ap-
plications in scientific and engineering domains [4]. Its profound impact arises
from robust mathematical foundations and practical implementations. More
and more people are interested in making transforms that can solve fractional
integro-differential equations. These transforms are often linked to basic ideas
like the gamma function, beta function, error function, Mittag-Leffler function,
and Mellin-Ross function [8].
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Integral transformations stand as fundamental mathematical tools crucial in
addressing various differential equations, including partial differential equations,
partial integro-differential equations, delay differential equations, and models
describing population dynamics. Out of these, the Mohand transform, which
comes from the classical Fourier integral, stands out as a simple and mathemat-
ically sound way to solve ordinary differential equations in the time domain.
Alongside the Mohand transform, the Fourier, Laplace, Aboodh, and Elzaki
transforms [2, 5, 6, 7] constitute the principal mathematical arsenal for solving
differential equations. Notably, the Mohand transform shares a close relation-
ship with the Laplace transform.

In recent research, Dubey et al. [12, 13, 14, 15, 16] have extensively explored
various aspects of fractional calculus, employing computational techniques to
forecast behavior, analyze integral transforms, investigate generalized invexity
and duality in optimization problems, and delve into fractal dynamics within
the physical sciences. Alongside these contributions, Singh, Purohit, and Kumar
[17] compiled a comprehensive book discussing advanced numerical methods for
differential equations, while Kumar et al. [18] conducted a computational anal-
ysis using fractal calculus to study local fractional partial differential equations.

The Mohand transform [1], like other integral transformations, exhibits cer-
tain limitations in its applicability. Its effectiveness often hinges on specific
conditions and assumptions, potentially restricting its scope when solving dif-
ferential equations. Some things about the Mohand approach are the same
as the Laplace transform, but it might be hard to get closed-form solutions,
especially when there are complicated boundary conditions or nonlinear equa-
tions. Recognizing and addressing these limitations is crucial when evaluating
its usefulness in solving fractional integro-differential equations.

Aruldoss and Anusuya Devi expanded the use of binomial series extension
coefficients and the Aboodh transform of fractional derivatives in 2020 to find
exact solutions for fractional differential equations that are not homogeneous
[3]. Moreover, Sumudu-based algorithms for differential equations have been
extensively explored [9, 10].

We use the Mohand transform of fractional derivatives and binomial series
extension coefficients in our research to come up with new ways to solve a
number of fractional integro-differential equations. Furthermore, we elucidate
properties relevant to our focal investigation.

2 Preliminaries

In this section, we are listing some preliminaries that are useful throughout the
paper.

1. For the function f(t), the RL fractional integral [3] of order ϖ > 0 is defined
as,

Iϖtf (t) =
1

Γ(ϖ)

∫ t

a

(t− ζ)
ϖ−1

f (ζ) dζ.

2
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2. Caputo fractional derivative [2] of the function f(t) is defined by

Dϖ
tf (t)=

{
fm (t) ; if ϖ=m∈N,

1
Γ(m−ϖ)

∫ ζ

0
fm(t)

(t−x)ϖ−m+1 dt ;if m−1 < ϖ<m,

where the Euler gamma function Γ(·) is defined by

Γ (ϕ) =

∫ ∞

0

tϕ−1e−t dt (R > 0) .

3. The Mohand transform [1] of a function f(t), t ∈ (0,∞) is defined by

M [f (t)] (s) = F (s) = s2
∫ ∞

0

e−st f (t) dt(s ∈ C).

4. The Mittag-Leffler function [11] is defined by

Eγ,δ (ϕ) =

∞∑
℘=0

ϕ℘

Γ (γ℘+ δ)
(γ, δ, ϕ ∈ C, R(γ) > 0).

5. The Simplest wright function [11] is defined by

ρ (ω, ϕ;φ) =
∞∑

℘=0

1

Γ(ω℘+ ϕ)
.
φ℘

℘!
(φ.ϕ, ω ∈ C ) .

6. The general Wright function [11] iλj (φ) is classified as φ ∈ C , ν1p, ν2p ∈ C,
and real ωp, ϕq ∈ R (p = 1, . . . , i, q = 1, . . . , j) by the series

iλj (ν) = iλj

(
(ν1p, ωp)1,i
(ν2q, ϕq)1,j

| φ
)

=
∞∑
r=0

∏i
p=1 Γ(ν1p + ωpr)∏j
q=1 Γ(ν2q + ϕqr)

.
φr

r!
.

7. The convolution integral of Mohand transform is

M [(f ∗ g) (t)] = 1

s2
M [f (t)]M [g (t)].

8. The inverse Mohand transform is defined by

M−1
[Γ(n+ 1)

sn−1

]
= tn.

9. The derivatives of the Mohand transform are

M [f
′
(t)] = sF (s)− s2f(0),

M [f
′′
(t)] = s2F (s)− s3f(0)− s2f

′
(0).

Remark 2.1

M [Dϖf (t)] (s) = s2
∫ ∞

0

e−st [Dϖ f (t)] dt

3
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= s2
∫ ∞

0

e−st 1

Γ (n−ϖ)

∫ t

0

f (n) (ζ)

(t− ζ)
ϖ−n+1 dζ dt

=
s2

Γ (n−ϖ)

∫ ∞

0

∫ ∞

ζ

e−st f (n) (ζ)

(t− ζ)
ϖ−n+1 dt dζ

=
s2

Γ (n−ϖ)

∫ ∞

0

f (n) (ζ)

∫ ∞

0

e−s(u+t) un−ϖ−1 du dζ

=
s2

Γ (n−ϖ)

∫ ∞

0

e−sζf (n) (ζ)

∫ ∞

0

e−su un−ϖ−1 du dζ

=
s2

Γ (n−ϖ)

∫ ∞

0

e−sζf (n) (ζ)
Γ (n−ϖ)

sn−ϖ
dζ

= sϖ−n+2

∫ ∞

0

e−sζ f (n) (ζ) dζ = sϖ−n+2 M
[
f (n) (ζ)

]
(s)

= sϖ−n+2.sn
[
F (s)−

(
sf (0) + f ′ (0) + · · ·+ s2−nf (n−1) (0)

)]
= sϖ+2

[
F (s)− sf (0)− f ′ (0)− · · · − s2−nf (n−1) (0)

]
= sϖ+2

[
M [f (t)]−

n∑
K=0

s1−Kf (K−1) (0)

]
.

Note: To change the order of integration in the preceding derivative we use
Fubini’s theorem.

3 Solutions of fractional integro-differential equa-
tions

We can strongly suspect thus far in this section that y (t) is enough to ensure
that the Mohand transform M [y (t)] proceeds for some value of the parameter
s.
Theorem 3.1 Let 1 < ϖ < 2 and a and b ∈ R. Then the fractional integro-
differential equation

y
′′
(t) + a yϖ (t) + by (t) =

∫ s

0

g (t)

(s− t)
ϱ dt ; 0 < ϱ < 1 (1)

With y (0) = ℵ0 and y′ (0) = ℵ1 its proposal is provided by

y (t) = ℵ0

∞∑
K=0

(−b)
K
t2K

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 1] ℘!

+ ℵ1

∞∑
K=0

(−b)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 2] ℘!

4
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+ aℵ0

∞∑
K=0

(−b)
K
t2K−ϖ+2

K!

∞∑
r=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K−ϖ + 3] ℘!

+ aℵ1

∞∑
K=0

(−b)
K
t2K−ϖ+3

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K−ϖ + 4] ℘!

+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 2] ℘!

.

(2)

Proof:
Utilizing the Mohand transform in (1) and taking into consideration, we have

s2F (s)−s3f (0)−s2f ′ (0)+a
[
sϖF (s)− sϖ+1f (0)− sϖf ′ (0)

]
+bF (s) = M [f (t)]

where f (t) =
∫ s

0
g(t)

(s−t)ϱ dt,

s2M [y (t)]−s3y (0)−s2y′ (0)+asϖM [y (t)]−asϖ+1y (0)−asϖy′ (0)+b M [y (t)] = M [f (t)](
s2 + asϖ + b

)
M [y (t)] = s3ℵ0 + s2ℵ1 + asϖ+1ℵ0 + asϖℵ1 +M [f (t)]

M [y (t)] =
s3ℵ0 + s2ℵ1 + asϖ+1ℵ0 + asϖℵ1 +M [f (t)]

(s2 + asϖ + b)
. (3)

Since
1

(s2 + asϖ + b)
=

s−ϖ

s2−ϖ + a+ bs−ϖ

=
s−ϖ

(s
2−ϖ

+ a)
(
1 + bs−ϖ

s2−ϖ+a

)
=

s−ϖ

s2−ϖ + a

∞∑
K=0

(
−bs−ϖ

s2−ϖ + a

)K

=
∞∑

K=0

(−b)
k
s−ϖK−ϖ

(s2−ϖ + a)
K+1

=
∞∑

K=0

(−b)
K
s−2K−2(

1 + a sϖ−2
)K+1

=
∞∑

K=0

(−b)
K
s−2K−2

∞∑
℘=0

(
−asϖ−2

)℘ (
K+ ℘
℘

)

=
∞∑

K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K−2 (4)
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and

M [f (t)] = M

[∫ s

0

g (t)

(s− t)
ϱ dt

]
.

This is Convolution integral,

F (P ) =
1

s2
K (P ) G(P )

Where K(P ) is the Mohand transform of K(s) = s−ϱ

M [K (s)] = s−ϱ

K (P ) =
Γ(−ϱ+ 1)

s−ϱ−1
= sϱ+1 Γ (−ϱ+ 1)

G (P ) =
p2F (P )

pϱ+1 Γ(1− ϱ)

G (P ) =
p1−ϱF (P )

Γ (1− ϱ)

G (P ) =
sinπ ϱ

π
p . p−ϱΓ (ϱ)F (P )

G (P ) =
sinπ ϱ

π
p .M

[∫ s

0

(s− t)
ϱ
f ′(t) dt

]
(5)

Substituting the above two equations (4) and (5) in (3), we get

M [y (t)] = ℵ0

∞∑
K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K−1

+ ℵ1

∞∑
K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K−2

+ aℵ0

∞∑
K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K+ϖ−3

+ aℵ1

∞∑
K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K+ϖ−4

+
sinπ ϱ

π
p .M

[∫ s

0

g (t)

(s− t)
ϱ dt

] ∞∑
K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(ϖ−2)℘−2K−2 .

(6)

Thus, providing inverse Mohand transform on both sides in equation (6), we get

y (t) = ℵ0

∞∑
K=0

(−b)
K
t2K

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 1] ℘!
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+ ℵ1

∞∑
K=0

(−b)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 2] ℘!

+ aℵ0

∞∑
K=0

(−b)
K
t2K−ϖ+2

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K−ϖ + 3] ℘!

+ aℵ1

∞∑
K=0

(−b)
K
t2K−ϖ+3

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K−ϖ + 4] ℘!

+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(2−ϖ)

)℘
Γ [(2−ϖ)℘+ 2K+ 2] ℘!

.

Example 3.1 The fractional integro-differential equation is

y
′′
(t) +

√
6 y(

3
2 ) (t) + 11y (t) =

∫ s

0

g (t)

(s− t)(
1
2 )

dt

With y (0) = 1 and y′ (0) = 1 its proposal is provided by

y (t) =
∞∑

K=0

(−11)
K
t2K

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−
√
6 t(

1
2 )
)℘

Γ
[(

1
2

)
℘+ 2K+ 1

]
℘!

+

∞∑
K=0

(−11)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−
√
6t(

1
2 )
)℘

Γ
[(

1
2

)
℘+ 2K+ 2

]
℘!

+
√
6

∞∑
K=0

(−11)
K
t2K+ 1

2

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−
√
6t(

1
2 )
)℘

Γ
[(

1
2

)
℘+ 2K+ 3

2

]
℘!

+
√
6

∞∑
K=0

(−11)
K
t2K+ 3

2

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−
√
6t(

1
2 )
)℘

Γ
[(

1
2

)
℘+ 2K+ 5

2

]
℘!

+
1

π

d

ds

∫ s

0

(s− t)
− 1

2 f (t) dt
∞∑

K=0

(−11)
K
t2K+1

K!

∞∑
℘=0

Γ (K+ ℘+ 1)
(
−at(

1
2 )
)℘

Γ
[(

1
2

)
℘+ 2K+ 2

]
℘!

,

Figure 1 illustrates the solution behavior of the fractional integro-differential
equation of example 1 at various values of ϖ.
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Figure 1: The solution behavior of Example 1.

Theorem 3.2 Let 1 < ϖ < 2 and a and b ∈ R. Then the fractional integro-
differential equation is

yϖ (t) + a y′ (t) + by (t) =

∫ s

0

g (t)

(s− t)
ϱ dt ; 0 < ϱ < 1 (7)

with y (0) = ℵ0 and y′ (0) = ℵ1 its proposal is provided by

y (t) = ℵ0

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK

Γ [(ϖ − 1)℘+ϖK+ 1] ℘!

+ ℵ1

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+1

Γ [(ϖ − 1)℘+ϖK+ 2] ℘!

+ aℵ0

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+ϖ−1

Γ [(ϖ − 1)℘+ϖK+ϖ] ℘!

+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+ϖ−1

Γ [(ϖ − 1)℘+ϖK+ϖ] ℘!
.

(8)

Proof: Utilizing the Mohand transform in (7) and taking into consideration,
we have

sϖF (s)− sϖ+1f (0)− sϖf ′ (0) + a
[
s F (s)− s2f (0)

]
+ b F (s) = M [f (t)]

where f (t) =
∫ s

0
g(t)

(s−t)ϱ dt,

sϖM [y (t)]−sϖ+1y (0)−sϖy′ (0)+a s M [y (t)]−as2y (0)+b M [y (t)] = M [f (t)]
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sϖM [y (t)]− sϖ+1ℵ0 − sϖℵ1 + a s M [y (t)]− as2ℵ0 + b M [y (t)] = M [f (t)]

M [y (t)] =
sϖ+1ℵ0 + sϖℵ1 + as2ℵ0 +M [f (t)]

(sϖ + a s+ b)
. (9)

Since
1

(sϖ + a s+ b)
=

s−1

sϖ−1 + a+ bs−1

=
s−1

(s
ϖ−1

+ a)
(
1 + b s−1

sϖ−1+a

)
=

s−1

sϖ−1 + a

∞∑
K=0

(
−bs−1

sϖ−1 + a

)K

=
∞∑

K=0

(−b)
K
s−K−1

(sϖ−1 + a)
K+1

=
∞∑

K=0

(−b)
K
s−ϖK−ϖ(

1 + a s1−ϖ
)K+1

=

∞∑
K=0

(−b)
K
s−ϖK−ϖ

∞∑
℘=0

(
−as1−ϖ

)℘ (
K+ ℘
℘

)

=
∞∑

K=0

(−b)
K

∞∑
℘=0

(
K+ ℘
℘

)
(−a)

℘
s(1−ϖ)℘−ϖK−ϖ (10)

and we know that,

M [f (t)] = M

[∫ s

0

g (t)

(s− t)
ϱ dt

]
.

This gives that,

G (P ) =
sinπ ϱ

π
p .M

[∫ s

0

(s− t)
ϱ
f ′(t) dt

]
. (11)

Substituting the above two equations (10) and (11) in (9), we get

y (t) = ℵ0

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK

Γ [(ϖ − 1)℘+ϖK+ 1] ℘!

+ ℵ1

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+1

Γ [(ϖ − 1)℘+ϖK+ 2] ℘!

+ aℵ0

∞∑
K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+ϖ−1

Γ [(ϖ − 1)℘+ϖK+ϖ] ℘!
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+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (−a)
℘
t(ϖ−1)℘+ϖK+ϖ−1

Γ [(ϖ − 1)℘+ϖK+ϖ] ℘!
.

The Wright function can express this solution as

y (t) = ℵ0

∞∑
K=0

(−b)
K
tϖK

K!
1λ1

(
(K+ 1, 1

(ϖK+ 1, ϖ − 1)
| − a tϖ−1

)

+ ℵ1

∞∑
K=0

(−b)
K
tϖK+1

K!
1λ1

(
(K+ 1, 1

(ϖK+ 2, ϖ − 1)
| − a tϖ−1

)

+ aℵ0

∞∑
K=0

(−b)
K
tϖK+ϖ−1

K!
1λ1

(
(K+ 1, 1

(ϖK+ϖ, ϖ − 1)
| − a tϖ−1

)

+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K
tϖK+ϖ−1

K!
1λ1

(
(K+ 1, 1

(ϖK+ϖ, ϖ − 1)
| − a tϖ−1

)
. (12)

Example 3.2 The fractional integro-differential equation is

y
3
2 (t)− 4y′ (t)− 5 y (t) =

∫ s

0

g (t)

(s− t)
1
2

dt

with y (0) = 1 and y′ (0) = 1 its proposal is provided by

y (t) =
∞∑

K=0

(5)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (4)
℘
t(ϖ−1)℘+ϖK

Γ
[(

1
2

)
℘+ 3

2K+ 1
]
℘!

+
∞∑

K=0

(5)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (4)
℘
t(

1
2 )℘+

3
2K+1

Γ
[(

1
2

)
℘+ 3

2K+ 2
]
℘!

−4

∞∑
K=0

(5)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (4)
℘
t(

1
2 )℘+

3
2K+ 1

2

Γ
[(

1
2

)
℘+ 3

2K+ 3
2

]
℘!

+
1

π

d

ds

∫ s

0

(s− t)
− 1

2 f (t) dt
∞∑

K=0

(5)
K

K!

∞∑
℘=0

Γ (K+ ℘+ 1) (4)
℘
t(

1
2 )℘+

3
2K+ 1

2

Γ
[(

1
2

)
℘+ 3

2K+ 3
2

]
℘!

Figure 2 illustrates the solution behavior of the fractional integro-differential
equation of example 1 at various values of ϖ.
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Figure 2: The solution behavior of Example 2.

Proposition 3.1 Let 1 < ϖ, ϱ < 2 and b ∈ R. Then the fractional integro-
differential equation is

yϖ (t)− by (t) =

∫ s

0

g (t)

(s− t)
ϱ dt ; 0 < ϱ < 1 (13)

With y (0) = ℵ0 its proposal is provided by

y (t) = ℵ0

∞∑
K=0

bK
tϖK

Γ(ϖK+ 1)
+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt
∞∑

K=0

(−b)
K
tϖ+ϖK−1

Γ(ϖ +ϖK)

= ℵ0Eα (btϖ) +
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt tϖ−1Eϖ,ϖ (btϖ) . (14)

Proof: The proof of this proposition as like as previous theorem.

Remark 3.1 Accordingly, a = 0 in (7), then the derivative is

yϖ (t) + by (t) =

∫ s

0

g (t)

(s− t)
ϱ dt ; 1 < ϖ ≤ 2, 0 < ϱ < 1 (15)

With y (0) = ℵ0 and y′ (0) = ℵ1 its proposal is provided by

y (t) = ℵ0Eϖ,1 (−btϖ)+ℵ1Eϖ,2 (−btϖ)+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt tϖ−1Eϖ,ϖ (−btϖ) . (16)

Proposition 3.2 A nearly simple harmonic vibration integro-differential equa-
tion

yϖ (t) + z2y (t) =

∫ s

0

g (t)

(s− t)
ϱ dt ; 1 < ϖ ≤ 2, 0 < ϱ < 1 (17)
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With y (0) = ℵ0 and y′ (0) = ℵ1 its proposal is provided by

y (t) = ℵ0Eϖ,1

(
−z2tϖ

)
+ℵ1Eϖ,2

(
−z2tϖ

)
+
sinϱπ

π

d

ds

∫ s

0

(s− t)
ϱ−1

f (t) dt tϖ−1Eϖ,ϖ

(
−z2tϖ

)
.

Proof : The above proof is accomplished by implanting b = z2 in equation (16).

4 Conclusion

The utilization of the Mohand transform to solve fractional integro-differential
equations stands as a pivotal focus of this article. Exploring the intricate rela-
tionship between the Mohand transform and the Laplace transform has yielded
invaluable insights, enriching our comprehension of these integral transforma-
tions. This study uses a unique method that combines the Mohand transform
with binomial series extension coefficients to come up with a new way to solve
fractional integro-differential equations. Beyond its mere application, this re-
search delves into elucidating various properties and providing illustrative exam-
ples, substantiating the efficacy and adaptability of the proposed methodology.
Looking ahead, future research endeavors aim to refine the Mohand transform’s
applicability by addressing its limitations in specific scenarios. Also, looking
into how it can be used in different scientific fields and combining different
types of methods are both good ways to improve how differential equations are
solved. In conclusion, this study not only introduces a novel approach but also
sets the stage for broader investigations, seeking to expand the practical utility
and deepen the understanding of the Mohand transform in diverse mathemati-
cal problem-solving domains.
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Abstract

The main concern is the uncertainty in the real-world solid transporta-
tion problem. This study examines a supply, demand, and conveyance
capacity-based multi-choice solid stochastic multi-objective transporta-
tion problem (MCSS-MOTP). Due to uncertainty, the concrete objective
function coefficients of the proposed model are of multivariate type. Fur-
thermore, the parameters of the constraints are treated as independent
multivariate random variables with normal distribution. First, a New-
ton divided difference method-based interpolation polynomial is described
that extends an interpolation polynomial using practical properties at
non-negative integer nodes to deal with any multiple-choice parameter.
Second, the probabilistic constraints are converted into precise ones uti-
lizing a stochastic programming approach. In the end, ranking procedure
was used to compare the existing approach with the old models. The
proposed model’s applicability was confirmed using a numerical example.

Keywords- Solid transportation problem; Newton divided difference; Stochas-
tic programming; multi-choice random parameter; Ranking of solutions
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1 Introduction

The first and most significant use of the linear programming problem is in
transportation [20]. It has numerous applications in inventory control, supply
management, logistics systems, and production planning, among others. By
taking into account the standard transportation problem’s parameters are cost,
supply, and demand. However, given the level of market competition today,
it’s possible that the criteria aren’t presented precisely. The price of the prod-
uct may change occasionally or it may depend on how the product is made.
Additionally, because information on the shipping goods is unavailable, supply
and demand may be ambiguous in nature. For these reasons and to deal with
ambiguous information, Zadeh[16]developed the idea of ambiguity.

In numerous fields including Economics, Psychology, Philosophy, Mathemat-
ics, and Statistics, decision-making is crucial. The necessity of transportation
as a component of distribution networks must be acknowledged. The main ob-
jective of the transportation problem (TP) is to reduce the price of transferring
goods between consumers and producers so that manufacturers may more eas-
ily satisfy consumers’ demands. The TP’s parameters are price, supply, and
demand. We may transfer goods from sources to destinations using different
modes of transportation even though there are many modes of transportation
accessible for shipments of commodities in a transportation system if we want
to save money or meet deadlines. The fundamental TP was first expressed by
Hitchcock [13] and later, according to the literature, it was widely discussed by
many authors.

When there are random parameters involved in an optimization problem,
stochastic programming (SP) techniques are applied. This indicates that some
of the parameters in the model coefficients have known probability distributions
that indicate they are known with uncertainty. Typically, SP arises frequently
in a wide range of real-world management science, engineering, and technology
challenges that contain some stochastic factors, i.e., uncertain input data, and
models built on unreliable information. Because of the rapid advancement of
computers and contemporary optimization techniques over the past five decades,
there have been an increasing number of stochastic optimization applications to
various challenging real-world decision-making situations. SP models have been
effectively used to a number of applications, including supply chain manage-
ment, environmental planning, telecommunications, transportation, and plan-
ning for energy and financial resources.

A mathematical method called stochastic programming is used to resolve
optimization problem with uncertainty. Stochastic programming considers the
randomness or variability of these values as opposed to conventional optimiza-
tion techniques, which assume deterministic values for variables. By taking into
account a variety of potential outcomes and the corresponding probabilities, it
enables decision-makers to make educated decisions. For instance, stochastic
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programming in finance can be used to choose the best investment portfolio by
taking into account various market conditions and their probabilities. It can
be used in supply chain management to optimize inventory levels by taking un-
certain demand and supply disruptions into account. A potent tool for making
decisions in complicated and uncertain contexts is stochastic programming.

The solid transportation problem (STP), also known as three-dimensional
TP or three-dimensional TP, is a developed version of the well-known TP that
was first modelled by Schell [11]and developed by Haley [15]. The objective
of STP is to transport homogeneous goods from their origin to their final des-
tination using different modes of transportation to minimize the total cost of
transportation. A three-dimensional TP’s parameters include the product’s
availability at source points, the product’s needs at destination points, and the
carrying capacity of different modes of transportation (such as trucks, cargo
planes, goods trains, ships, etc.) used to move the product from sources to
destinations. Due to the inclusion of multiple variables, such as equipment fail-
ure and labor concerns for manufacturing, market mode, road condition, and
weather conditions for transportation, the problem’s parameters are not deter-
ministic in real life. Random variables are occasionally used to describe these
uncertainties, particularly stochastic ones. When formulating a real-world STP,
we must take into account the optimization of a number of goals, including
minimizing transportation time, minimizing loss during transit, and minimiz-
ing transportation cost. This knowledge prompts us to take into account a
stochastic multi-objective STP. The STP is a significant study area from both
a theoretical and a practical standpoint. In this field of study, numerous re-
searchers have made substantial contributions. Supply, demand, transportation
capacity, direct costs, and fixed charges are all unknown variables in the fixed
charge STP that Zhang et al.[9] discussed.

An urgent situation in the transportation sector that needs immediate at-
tention and a solution is referred to as a ”solid transportation problem.” When
there is a lack of dependable and effective transportation infrastructure, it can
cause delays, traffic, or poor connectivity. For instance, if a city’s public trans-
portation infrastructure is out of date and unable to handle the rising demand,
the city may have a serious transportation issue. As a result, travellers may ex-
perience crowded buses, protracted waits, and frustration. To ensure a smooth
and efficient movement of people and commodities, solving solid transportation
issues needs thoughtful planning, investment in infrastructure development, and
competent management.

The majority of real-world, practical decision-making issues are modelled us-
ing multiple choices. The use of multi-choice optimization techniques has grown
in importance in a variety of fields, including technology, business, transporta-
tion, and military applications. The price indices the objective function’s Cijk

might stand in for the price of moving a unit of production from source i to
destination j by conveyance k . Due to rising fuel prices and other important
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factors, let us present a multiple-choice version of the cost coefficient of the ob-
jective function for the transportation problem. Supply and demand parameters
should also be multi-choice in order to account for market price fluctuations for
all items. Multiple choice programming, which Healy [25] initially invented, is
a method for solving linear programming problems with zero-one variables.

Mathematicians and computer scientists utilize Newton’s divided difference
interpolation as a numerical technique to approximate a function from a collec-
tion of data points. Its foundation is the idea of divided differences, which entails
figuring out the variations between related data points. This method enables
the construction of a polynomial function that traverses each of the provided
data points. Newton’s Divided Difference a multi-choice fractional stochastic
transport problem can be solved using interpolation by transforming it into a
deterministic model [14]. A method for solving MCFS-MOTPs by interpolating
multi-choice parameters, transforming probabilistic constraints, linearizing the
problem, and solving using fuzzy goal programming and ϵ-constraint method [4].
A method for solving MOSSTP under uncertainty by formulating it as a chance-
constrained programming problem and using global criterion method and fuzzy
goal programming approach to find good solutions in a reasonable amount of
time [17]. A new approach for analysing STP by combining multi-choice pro-
gramming and stochastic programming, and using a transformation technique
to find an optimal solution [18]. A weighted goal programming approach for
multi-objective transportation problems that can obtain compromise solutions
according to the decision-maker’s priorities [2]. A weighted goal programming
approach for multi-objective transportation problems that finds compromise
solutions according to the decision-maker’s priorities, illustrated with a numer-
ical example [21]. A method for solving multi-choice stochastic transportation
problems by using Lagrange’s interpolating polynomial to select an appropriate
choice and transforming stochastic supply constraints into deterministic con-
straints [24].

A new transformation technique for solving multi-choice stochastic trans-
portation problems with exponential distribution by introducing binary vari-
ables for each aspiration level of each cost coefficient, transforming probabilistic
constraints into deterministic constraints, and formulating a non-linear deter-
ministic model [8]. A method for solving multi-choice transportation problems
by using Lagrange’s interpolating polynomial and chance technique to select
an appropriate choice and formulate a non-linear mathematical model [7, 23].
A mathematical model for a transportation problem with nonlinear cost and
multi-choice demand is proposed by developing a general transformation tech-
nique and formulating a multi-objective decision making model [19]. A solu-
tion procedure for multi-choice stochastic transportation problem with extreme
value distribution by transforming probabilistic constraints into deterministic
constraints, handling multi-choice type cost coefficients using binary variables
[6].
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Table 1:Comparison of the approach to the present models

Reference S D C MO MC Methodology
Joshi[21] ✓ ✓ ✓ GP using WS

Agrawal[14] ✓ ✓ ✓ NDD
Das[17] ✓ ✓ ✓ ✓ WD
Roy[18] ✓ ✓ ✓ CD
Sayed[4] ✓ ✓ ✓ ✓ NDD
Roy[22] ✓ ✓ ✓ WD

Proposed Approach ✓ ✓ ✓ ✓ ✓ NDD

S∗= Supply, D∗= Demand,C∗= Conveyance,
MO∗=Multi-Objective, MC∗= Multi-Choice,

GP∗= Goal programming,WS∗= Weighted Sum,WD∗= Weibull
Distribution,CD∗= Cauchy’ Distribution,NDD∗= Newton’s divided

difference,

A solution procedure for multi-objective stochastic unbalanced transporta-
tion problem by changing the problem into deterministic scenario using fuzzy
theory [5]. A solution procedure for multi-choice stochastic transportation prob-
lem with Weibull distribution by transforming probabilistic constraints into de-
terministic [10]. A solution procedure for multi-objective capacitated trans-
portation problem with uncertain input information by transforming the uncer-
tain information into deterministic form and solving the resultant MOCTP for
the compromise solution [25]. A method for solving linear programming prob-
lems with multi-choice parameters by interpolating technique [1]. A multi-choice
stochastic transportation problem with extreme value distribution is solved by
transforming probabilistic constraints into deterministic constraints [6]. A two-
phase solution procedure for multi-objective capacitated transportation problem
with uncertain input information is proposed [3]. A solution methodology for
multi-choice stochastic transportation problem with Weibull distribution and
multi-choice cost coefficients is proposed [22].

The paper is organized as follows. Section 1 presents a review of the rele-
vant literature and introduction. Basic definitions that are related to this article
presents in section 2. This paper’s notation is covered in section 3. Section 4
presents the exhaustive problem statement. Section 5 illustrates the process for
solving the given problem. Section 6 proposes a new solution method for the
problem. Section 7 evaluates the performance of the proposed solution method
on a set of numerical examples. Section 8 discusses the theoretical and prac-
tical implications of the proposed method. Section 9 concludes the paper and
suggests directions for future research.
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Figure 1: Pareto optimal solution

2 Basic definitions

2.1 Feasible solution:

A feasible solution to an optimization problem is a set of values for the decision
variables that satisfies all of the constraints of the problem.

2.2 Pareto optimal solution:

A set of ”non-inferior” solutions in the objective space that specify a limit
beyond which none of the objectives can be improved without compromising at
least one of the other objectives is known as a pareto optimum solution.

2.3 Compromise solution:

A compromise solution is a balanced outcome that takes into account multiple
conflicting factors or goals. It involves finding a middle ground that satisfies dif-
ferent objectives without fully favouring one over the others. It’s like reaching a
fair agreement that considers everyone’s preferences. Decision-makers prioritize
the compromise option over all other solutions when taking into account all the
criteria in the multi-objective.

2.4 Ideal solution:

When a problem involves minimization, the ideal solution is one in which each
objective function achieves its optimal minimum.
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2.5 Anti-ideal solution:

When a problem involves minimization, the anti-ideal solution is one in which
each objective function achieves its maximum value.

3 Notations

• R: number of objective functions

• m: number of supply sources

• n: number of demand destinations

• l: number of conveyances

• xijk: amount of shipment from ith supply source to jth demand destination
using kth transportation mode

• Zr: rth objective functions

• crijk: unit cost in the rth objective function

• ai: amount of supply at the ith supply source

• bj: amount of demand at the jthdemand destination

• ek: amount of conveyance capacity of the kth transportation mode

• ϕ: the cumulative distribution functions

• θi: probability for ai

• δj: probability forbj

• σk: probability for ek

• gθi : the value of standard normal variable for ai

• gδj : the value of standard normal variable for bj

• gσk
: the value of standard normal variable for ek

• E(Fai
(wai

)): the mean of supply of interpolating polynomial Fai
(wai

)

• E(Fbj (wbj )): the mean of demand of interpolating polynomial Fbj (wbj )

• E(Fek(wek)): the mean of conveyance of interpolating polynomial Fek(wek)

• V (Fai
(wai

)): the variance of supply of interpolating polynomial Fai
(wai

)

• V (Fbj (wbj )): the variance of demand of interpolating polynomial Fbj (wbj )

• V (Fek(wek)): the variance of conveyance of interpolating polynomial Fek(wek)
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4 Problem Statement:

A transportation company must convey its products from numerous production
facilities to numerous retail locations. There are m production houses, n retail
stores, and l vehicles, assuming that a homogeneous product is conveyed from
the ith production house to the jth retail store by the kth vehicle. Let xijk

serve as a representation of the product’s unit quantity. The parameters for
supplies, demand, and conveyance capacity are thought of as multi-choice ran-
dom parameters since the values of the parameters are not always set due to the
environment’s uncertainty and variety of possibilities. As a result, the defined
problem’s constraints are probabilistic with regard to their degree of want. The
mathematical formulation of the aforementioned problem is as follows because
the objective function is in linear form and the transportation cost is considered
to be of the multi-choice variety:

Min Zr =
m∑
i=1

n∑
j=1

l∑
k=1

(c1ijk, c
2
ijk, . . . , c

R
ijk)xijk, (1)

Subject to:

P{
n∑

j=1

l∑
k=1

xijk ≤ (a1i , a
2
i , . . . , a

u
i )} ≥ 1− θi, i = 1, 2, . . . ,m (2)

P{
m∑
i=1

l∑
k=1

xijk ≥ (b1j , b
2
j , . . . , b

v
j )} ≥ 1− δj , j = 1, 2, . . . , n (3)

P{
m∑
i=1

n∑
j=1

xijk ≤ (e1k, e
2
k, . . . , e

q
k)} ≥ 1− σk, k = 1, 2, . . . , l (4)

xijk ≥ 0,∀ i, j and k (5)

Where the multi-choice random parameters for the total availability ai at
the ith manufacturing house, regarded as an independent random variable, are
(a1i , a

2
i , . . . , a

u
i ).The multi-choice random parameters (b1j , b

2
j , . . . , b

v
j ) for the over-

all quantity bj of the product at the j
th retail outlets are regarded as independent

random variables. The multi-choice random parameters for the total capacity
ek of the conveyance at the kth vehicle, which is regarded as an independent
random variable, are (e1k, e

2
k, . . . , e

q
k). The probability of meeting the constraints

is represented by the values θi, δj and σk.
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5 Solutions Methodology

5.1 Newton’s divided difference interpolating polynomial
for multi-choice parameters

The Newton’s divided Difference Interpolation numerical approximation tech-
nique is used to convert the multi-choice parameter into the best option. In-
troduce an integer variable so that the interpolating polynomial can be defined
for each option of a multi-choice parameter. The integer variables wt

cijk
, (t =

0, 1, . . . , s − 1) are used since there are s possible cost options in the problem
above.

For each alternative, the integer variables wp
ai
(p = 0, 1, . . . , u − 1), wh

bj
(h =

0, 1, . . . , v − 1) and wg
ek
(g = 0, 1, . . . , q − 1) are introduced since supplies, de-

mands, and conveyance capacity are multi-choice random parameters. Each
multi-choice parameter has a different divided difference that is determined
based on the alternatives. Using Table 2, which lists various divided difference
orders, Newton’s divided difference (NDD) interpolation polynomial is created
for the cost parameter in equation (6).

Table 2:Divided difference (DD)

wt
cij1 Fcijk(w

t
cijk

First DD Second DD Third DD

0 c1ijk
f [w0

cijk
, w1

cijk
]

1 c2ijk f [w0
cijk

, w1
cijk

, w1
cijk

]

f [w1
cijk

, w2
cijk

] f [w0
cijk

, w1
cijk

, w2
cijk

, w3
cijk

]

2 c3ijk f [w1
cijk

, w2
cijk

, w3
cijk

]

f [w2
cijk

, w3
cijk

]

3 c4ijk

Fcijk(wcijk) = f [w0
cijk

] + (wcijk − w0
cijk

)f [w0
cijk

, w1
cijk

] + (wcijk − w0
cijk

)

(wcijk − w1
cijk

)f [w0
cijk

, w1
cijk

, w2
cijk

]

+(wcijk − w0
cijk

)(wcijk − w1
cijk

), . . . , (wcijk − ws−1
cijk

)

f [w0
cijk

, w1
cijk

, . . . , ws−1
cijk

] (6)

Fcijk = c1ijk + (wcijk − w0
cijk

)(c2ijk − c1ijk) + (wcijk − w0
cijk

)(wcijk − w1
cijk

)

(
c3ijk − 2c2ijk + c1ijk
(w2

cijk
− w0

cijk
)

+ · · ·+
s∑

t=1

ctijk
s−1
t̸=p+1,p=0(w

t−1
cijk − wp

cijk)
(7)

Similarly, by replacing the multiple choice parameters in the program with
its interpolated polynomials for supply, demand, and transportation capacity,
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represented by Fai(wai), Fbj (wbj ) and Fek(wek) Respectively, the mathematical
model can be formulated as follows.

Min Zr =
m∑
i=1

n∑
j=1

l∑
k=1

Fijk(wijk)xijk, (8)

Subject to:

P{
n∑

j=1

l∑
k=1

xijk ≤ Fai(wai)} ≥ 1− θi, i = 1, 2, . . . ,m (9)

P{
m∑
i=1

l∑
k=1

xijk ≥ Fbj (wbj )} ≥ 1− δj , j = 1, 2, . . . , n (10)

P{
m∑
i=1

n∑
j=1

xijk ≤ Fek(wek)} ≥ 1− σk, k = 1, 2, . . . , l (11)

xijk ≥ 0, ∀ i, j and k (12)

5.2 The transformation of probabilistic constraints

The multi-choice parameters were transformed into their interpolating polyno-
mials so that the resulting probabilistic constraints would be transformed into
their deterministic form. To transform its deterministic restrictions into proba-
bilistic ones, we consider the supply’s constraints.

Consider the constraint (9) for every, i = 1, 2, . . . ,m

P{
n∑

j=1

l∑
k=1

xijk ≤ Fai(wai)} ≥ 1− θi

or

1− P{
n∑

j=1

l∑
k=1

xijk ≤ Fai(wai)} ≥ 1− θi

Applying Chance constrained technique, this implies

P{Fai
(wai

)− E(Fai
(wai

))√
V (Fai

(wai
))

≤
∑n

j=1

∑l
k=1 xijk − E(Fai(wai))√
V (Fai

(wai
))

} ≤ θi

P{ξai
≤

∑n
j=1

∑l
k=1 xijk − E(Fai

(wai
))√

V (Fai
(wai

))
} ≤ θi

ϕ{
∑n

j=1

∑l
k=1 xijk − E(Fai

(wai
))√

V (Fai(wai))
} ≤ ϕ(−gθi)

10
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{
∑n

j=1

∑l
k=1 xijk − E(Fai

(wai
))√

V (Fai
(wai

))
} ≤ −gθi

n∑
j=1

l∑
k=1

xijk ≤ E(Fai
(wai

))− gθi
√
V (Fai

(wai
)) (13)

The mean and variance of the interpolating polynomial Fai
(wai

) are, respec-
tively, denoted by E(Fai

)(wai
) and V (Fai

)(wai
) accordingly. Additionally, let

ϕ be the standard normal distribution’s cumulative distribution function and
gθi stand for the standard normal variable’s value. Equation (13) thus expresses
the deterministic constraint of the probabilistic constraint (9).

The analogous deterministic constraint for every j = 1, 2, . . . , n and k =
1, 2, . . . , l is as follows. In a similar manner, using the same method to the de-
mand and conveyance capacity constraints

m∑
i=1

l∑
k=1

xijk ≤ E(Fbj (wbj )) + gδj

√
V (Fbj (wbj )) (14)

m∑
i=1

m∑
j=1

xijk ≤ E(Fek(wek))− gσk

√
V (Fek(wek)) (15)

where, E(Fbj (wbj ), E(Fek(wek) and V (Fbj (wbj ), V (Fek(wek) denotes the mean
and the variance of interpolating polynomial Fbj (wbj ) and Fek(wek) respectively
gδj and gσk

denotes the value of standard normal variable. We compute the ran-
dom interpolating polynomial’s mean and variance as

E(Fai
(wai

)) = E{a1i + (wai
− w0

ai
)(a2i − a1i ) + (wai

− w0
ai
)(wai

− w1
ai
)
a3
i−2a2

i+a1
i

w2
ai

−w0
ai

+ · · ·+
s∑

t=1

ati
s−1
t̸=p+1,p=0(w

t−1
cijk − wp

cijk)
}

= {E(a1i )+(wai
−w0

ai
)(E(a2i )−E(a1i ))+(wai

−w0
ai
)(wai

−w1
ai
)
E(a3

i )−2E(a2
i )+E(a1

i )
w2

ai
−w0

ai

+. . .+
∑s

t=1
E(at

i)
s−1
t̸=p+1,p=0(w

t−1
cijk

−wp
cijk

)
} (16)

V(Fai
(wai

)) = V {a1i + (wai
− w0

ai
)(a2i − a1i ) + (wai

− w0
ai
)(wai

− w1
ai
)
a3
i−2a2

i+a1
i

w2
ai

−w0
ai

+ · · ·+
s∑

t=1

ati
s−1
t̸=p+1,p=0(w

t−1
cijk − wp

cijk)
}

= {V (a1i )+(wai−w0
ai
)(V (a2i )−V (a1i ))+(wai−w0

ai
)(wai−w1

ai
)
V (a3

i )−2V (a2
i )+V (a1

i )
w2

ai
−w0

ai

+. . .+
∑s

t=1
V (at

i)
s−1
t̸=p+1,p=0(w

t−1
cijk

−wp
cijk

)
} (17)

The Fai
(wai

) mean and variance are shown in equations (16) and (17). Equa-
tions (16) and (17) can also be used to calculate the mean and variance of the
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interpolating polynomial for demand and conveyance capacity.

The deterministic model is implemented with chance constraints and New-
ton’s Divided Difference Interpolation.

Min Zr =
m∑
i=1

n∑
j=1

l∑
k=1

Fijk(wijk)xijk, r = 1, 2 . . . , R

Subject to:
n∑

j=1

l∑
k=1

xijk ≤ E(Fai
(wai

))− gθi
√
V (Fai

(wai
))

m∑
i=1

l∑
k=1

xijk ≤ E(Fbj (wbj )) + gδj

√
V (Fbj (wbj ))

m∑
i=1

m∑
j=1

xijk ≤ E(Fek(wek))− gσk

√
V (Fek(wek))

xijk ≥ 0,∀ i, j and k

The multi-choice solid stochastic multi-objective transportation problem (MCSS-
MOTP) can be applied to a variety of real-world problems, such as:

• Supply chain management: The MCSS-MOTP can be used to optimize
the transportation of goods and materials in a supply chain, where the
cost coefficients are uncertain and the objective is to minimize the total
transportation cost and satisfy the demand at each destination with a
specified probability.

• Project management: The MCSS-MOTP can be used to optimize the al-
location of resources in a project, where the cost coefficients are uncertain
and the objective is to minimize the total cost and complete the project
on time with a specified probability.

• Financial planning: The MCSS-MOTP can be used to optimize the allo-
cation of funds in a financial portfolio, where the return on investment
is uncertain and the objective is to maximize the expected return and
minimize the risk with a specified probability.

• Energy management: The MCSS-MOTP can be used to optimize the gen-
eration and distribution of energy in a power grid, where the cost of energy
is uncertain and the objective is to minimize the total cost and meet the
demand at each node with a specified probability.

The MCSS-MOTP is a powerful tool that can be used to solve a variety of
real-world problems. However, it is important to note that the problem may be
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difficult to solve, especially if the number of sources, destinations, and proba-
bilistic constraints are large.

Here are some of the challenges in solving the MCSS-MOTP:

• The problem may be computationally expensive to solve, especially if the
number of sources, destinations, and probabilistic constraints are large.

• The problem may be non-convex, which means that there may be multiple
local optima.

• The problem may be NP-hard, which means that it may not be possible to
find an optimal solution in polynomial time.

• Despite these challenges, the MCSS-MOTP is a valuable tool that can be
used to solve a variety of real-world problems.

6 Approaches to solve the MCSS-MOTP

6.1 First approach

In this we have used the weighted sum method to convert multiple objectives
into a single objective. In which the multi-choice cost parameter is reduced to
a single choice using Newton’s divided difference method. The mathematical
formulation is as follows:

Min Z =

R∑
r=1

drZr

Subject to:

n∑
j=1

l∑
k=1

xijk ≤ E(Fai
(wai

))− gθi
√
V (Fai

(wai
))

m∑
i=1

l∑
k=1

xijk ≤ E(Fbj (wbj )) + gδj

√
V (Fbj (wbj ))

m∑
i=1

m∑
j=1

xijk ≤ E(Fek(wek))− gσk

√
V (Fek(wek))

xijk ≥ 0,∀ i, j and k

Where Zr = individual objectives that converted into single choice using New-
ton’s divided difference approach
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6.2 Second approach

In this we have used the Joshi’s method to convert multiple objectives into a
single objective in which each multi choice objective converted into single choice
using NDD approach. The mathematical formulation is as follows:

Min µ′ =
R∑

r=1

µ(1− dr)

Subject to:

m∑
i=1

n∑
j=1

l∑
k=1

Fijk(wijk)xijk ≤ Z∗
r +

µ(1− dr)

ZU
r − ZL

r

, r = 1, 2 . . . , R

n∑
j=1

l∑
k=1

xijk ≤ E(Fai
(wai

))− gθi
√
V (Fai(wai))

m∑
i=1

l∑
k=1

xijk ≤ E(Fbj (wbj )) + gδj

√
V (Fbj (wbj ))

m∑
i=1

m∑
j=1

xijk ≤ E(Fek(wek))− gσk

√
V (Fek(wek))

xijk ≥ 0,∀ i, j and k

Where Z∗
r = individual objectives that converted into single choice using New-

ton’s divided difference approach

6.3 Third approach

Again, we convert multichoice into single choice using NDD approach and solved
the converted problem using Nomani’s method. The mathematical formulation
is as follows:

Min µ′ =

R∑
r=1

µ(1− dr)

Subject to:

m∑
i=1

n∑
j=1

l∑
k=1

Fijk(wijk)xijk ≤ Z∗
r + µ(1− dr), r = 1, 2 . . . , R

n∑
j=1

l∑
k=1

xijk ≤ E(Fai(wai))− gθi
√
V (Fai(wai))
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m∑
i=1

l∑
k=1

xijk ≤ E(Fbj (wbj )) + gδj

√
V (Fbj (wbj ))

m∑
i=1

m∑
j=1

xijk ≤ E(Fek(wek))− gσk

√
V (Fek(wek))

xijk ≥ 0,∀ i, j and k

Where Z∗
r = individual objectives that converted into single choice using New-

ton’s divided difference approach
This introduces the need to rank these methods due to the variety of ap-

proaches available for handling multi-objective transportation problems. To
address this, a tool is required to assist in ranking and selecting the most suit-
able method. It is at this point that the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) [12] is useful. TOPSIS helps rank differ-
ent methods based on their optimal solutions’ performances. In this situation,
the criteria are objective functions, and the alternatives are the best solutions.
In essence, TOPSIS helps us determine which method is the most effective in
terms of achieving optimal solutions for the problem at hand.

7 Numerical Example

Let’s consider the attached MCSS-MOTP:

Min Z1 = c1111x111 + c1121x121 + c1211x211 + c1221x221 + c1112x112 + c1122x122+

c1212x212 + c1222x222

Min Z2 = c2111x111 + c2121x121 + c2211x211 + c2221x221 + c2112x112 + c2122x122+

c2212x212 + c2222x222

Subject to:

Supply constraints

P{ x111 + x112 + x121 + x122 ≤ (a11, a
2
1, a

3
1)} ≥ 1− θ1,

P{ x211 + x212 + x221 + x222 ≤ (a12, a
2
2, a

3
2)} ≥ 1− θ2,

Demand constraints

P{ x111 + x112 + x211 + x212 ≤ b11} ≥ 1− δ1,

P{ x121 + x122 + x221 + x222 ≤ b12} ≥ 1− δ2,

Conveyance capacity constraints

P{ x111 + x121 + x211 + x221 ≤ (e11, e
2
1, e

3
1)} ≥ 1− σ1,
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Figure 2: Flow chart for the proposed method
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P{ x111 + x122 + x212 + x222 ≤ (e12, e
2
2, e

3
2)} ≥ 1− σ2,

xijk ≥ 0,∀ i, j and k

where the multi-choice criteria are described as

Table 3:Transportation cost for first objective

b1 b2
c1ij1 a1 15, 18, 20 15, 16, 18, 19

a2 16, 19, 22 25, 27, 28, 30
c1ij2 a1 14, 17, 19, 22 12, 15, 19

a2 11, 18, 20 20, 21, 22, 25

Table 4:Transportation cost for second objective

b1 b2
c2ij1 a1 8, 10, 13 11, 13

a2 9, 12, 15 7, 9, 11, 14
c2ij2 a1 5, 8, 9, 11 9, 11

a2 13, 17 11, 13, 14

Table 5:Supply; mean, variance and significance level

RV E(a1i ) V ar(a1i ) E(a2i ) V ar(a2i ) E(a3i ) V ar(a3i ) SL
a1 11.28 0.194 5.2 0.25 13.673 0.7712 0.89
a2 10.1 0.17 5 0.24 13.647 0.489 0.97

RV ∗=Random Variable,SL∗=Significance Level

Table 6:Demand; mean, variance and significance level

RV E(b1j ) V ar(b1j ) SL

b1 10 3 0.15
b2 9 2 0.2

Table 7:conveyance capacity; mean, variance and significance level

RV E(e1k) V ar(e1k) E(e2k) V ar(e2k) E(e3k) V ar(e3k) SL
e1 11.28 0.18 6.2 0.24 13.07041 0.542 0.97
e2 10.1 0.16 6 0.25 13.673 0.7412 0.96
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Min Z1 = [15 + 3w111 − 0.5w111(w111 − 1)]x111 + [15 + w121 + 0.5w121

(w121 − 1)− 1

3
w121(w121 − 1)(w121 − 2)]x121+

[16 + 3w211]x211 + [25 + 2w221 − 0.5w221(w221 − 1)

+
1

3
w221(w221 − 1)(w221 − 2)]x221 + [14 + 3w112

−0.5w112(w112 − 1) +
1

3
w112(w112 − 1)(w112 − 2)]x112+

[12 + 3w122 − 0.5w122(w122 − 1)]x122 + [11 + 7w212

−5

2
w212(w212 − 1)(w212 − 2)]x212 + [20 + w222

+
1

3
w222(w222 − 1)(w222 − 2)]x222

Min Z2 = [8 + 3v111 − 0.5v111(v111 − 1)]x111 + [11 + 2v121]x121+

[9 + 3v211]x211 + [7 + 2v221 +
1

6
v221(v221 − 1)

(v221 − 2)]x221 + [5 + 3v112 − v112(v112 − 1)

+
1

2
v112(v112 − 1)

(v112 − 2)]x112 + [9 + 2v122]x122+

[13 + 4v212]x212 + [11 + 2v222

−1

2
v222(v222 − 1)(v222 − 2)]x222

Subject to:

Supply constraints

x111 + x112 + x121 + x122 ≤ 11.28− 6.08r1 + 7.277r1(r1 − 1)

+ϕ−1(0.89)
√
(0.194 + 0.444r21 + 0.491r21(r1 − 1)2)

x211 + x212 + x221 + x222 ≤ 10.1− 5.1r2 + 6.874r2(r2 − 1)

+ϕ−1(0.97)
√
(0.17 + 0.41r22 + 0.404r22(r2 − 1)2)

Demand constraints
x111 + x112 + x211 + x212 ≥ 10 + ϕ−1(1− 0.15)

√
3

x121 + x122 + x221 + x222 ≥ 9 + ϕ−1(1− 0.20)
√
2

Conveyance capacity constraints

x111 + x121 + x211 + x221 ≤ 11.28− 5.08r3 + 5.9752r3(r3 − 1)+

ϕ−1(0.97)
√
(0.18 + 0.42r23 + 0.4205r23(r3 − 1)2)
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x112 + x122 + x212 + x222 ≤ 10.1− 4r4 + 5.8865r4(r4 − 1)+

ϕ−1(0.96)
√
(0.16 + 0.41r24 + 0.4753r24(r4 − 1)2)

0≤ w111 ≤ 2; 0 ≤ w121 ≤ 3; 0 ≤ w211 ≤ 2; 0 ≤ w221 ≤ 3;

0 ≤ w112 ≤ 3; 0 ≤ w122 ≤ 2; 0 ≤ w212 ≤ 2; 0 ≤ w222 ≤ 3;

0≤ v111 ≤ 2; 0 ≤ v121 ≤ 1; 0 ≤ v211 ≤ 2; 0 ≤ v221 ≤ 3;

0 ≤ v112 ≤ 3; 0 ≤ v122 ≤ 1; 0 ≤ v212 ≤ 1; 0 ≤ v222 ≤ 2;

0≤ r1 ≤ 2; 0 ≤ r2 ≤ 2; 0 ≤ r3 ≤ 2; 0 ≤ r3 ≤ 2, s = 1, 2, 3, 4
xijk ≥ 0,∀ i, j and k rs, wijk, vijk ∈ Z+

8 Results and Discussion

Using supply as a multi-choice random parameter, demands, and conveyance
as random variables with Normal Distribution, the numerical examples demon-
strate the multi-objective function in solid form with constraints. LINGO 18.0
software was used to generate the solutions.

Table 8:The solutions obtained for both the objectives separately, ignoring
other objectives, are follows:

S.No. Z1(IS) Z2(AIS) Z1(IS) Z2(AIS) X1 X2

1 w111 = 1 v111 = 1
2 w121 = 0 v121 = 0
3 w211 = 0 v211 = 0
4 w221 = 0 v221 = 0
5 w112 = 0 v112 = 0
6 w122 = 0 v122 = 0
7 w212 = 0 v212 = 0
8 287.6861 140.3208 455.6261 270.2812 w222 = 0 v222 = 0
9 x111 = 0 x111 = 0
10 x121 = 6.1587 x121 = 0
11 x211 = 0 x211 = 0
12 x221 = 0 x221 = 11.6163
13 x112 = 0 x112 = 11.8013
14 x122 = 5.4576 x122 = 0
15 x212 = 11.8013 x212 = 0
16 x222 = 0 x222 = 0

IS∗=Ideal Solution, AIS∗= Anti-Ideal Solution
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Table 9:Comparison of proposed method

S.N. W M1 M2 M3 R(M1) R(M2) R(M3)
1 n1 = 0.1 455.626 388.333 393.3888 0.4363 0.5563 0.5674

n2 = 0.9 140.321 155.073 455.626
2 n1 = 0.2 399.566 367.338 374.718 0.5436 0.6001 0.619

n2 = 0.8 148.945 166.524 399.566
3 n1 = 0.3 399.566 350.568 358.668 0.5436 0.6416 0.6621

n2 = 0.7 148.945 175.672 399.566
4 n1 = 0.4 319.222 336.863 344.723 0.7194 0.6762 0.6931

n2 = 0.6 192.769 183.147 319.222
5 n1 = 0.5 313.496 325.454 347.125 0.7185 0.6043 0.7123

n2 = 0.5 197.351 189.370 313.496
6 n1 = 0.6 313.496 322.961 321.683 0.7185 0.7169 0.6492

n2 = 0.4 197.351 210.589 313.496
7 n1 = 0.7 313.496 309.836 312.714 0. 7185 0.7156 0.6931

n2 = 0.3 197.351 207.108 313.496
8 n1 = 0.8 287.686 303.748 306.564 0.5637 0.6709 0.6528

n2 = 0.2 270.281 223.344 287.686
9 n1 = 0.9 288.786 296.569 298.516 0.5597 0.6206 0.6087

n2 = 0.1 271.581 243.632 288.786
10 w.p. 313.496 305.454 347.125 0.7185 0.6043 0.707

197.351 205.695 313.496

W ∗=Weights, M∗=Method, R∗=Ranking, w.p.∗=Without preference
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Figure 3: Graphical representation of a comparison of the consistency of the
method 1,2 and 3.

A graph that shows the comparison between the method 1, 2 and 3. This
graph is showing the rank. We can see that Method 3 is better than method 1
and 2. It’s like a race, and our method is winning by being closer to what we
want. The graph is like a storyteller that tells us method 3 is good at finding the
right answers. Graph is 2 objective of solid stochastic transportation problem.

9 Conclusion

The MCSS-MOTP has been discussed in this research. Solid multi-choice pa-
rameters support the provided model’s objective function. The transporta-
tion problem can be solved most effectively by combining three different ways
(the stochastic approach, normal randomness, and Newton’s divided difference
approach). The constraints parameters are random multi-option parameters.
Supply, demand, and conveyance are considered to be random variables with
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a normal distribution. The deterministic constraints are obtained by apply-
ing the chance constrained programming to the probabilistic constraints. The
multi-choice parameters were reduced to a single choice with the use of Newton’s
Divided Difference Interpolation, ensuring that the resulting solution would be
ideal. LINGO 18.0 software are applied to solve the above MCSS-MOTP. In
this you can work on MCSS-MOTP with fractional objective in future. In the
real world, transportation problems are often characterized by uncertainty. For
example, the demands at the destinations may be uncertain, or the cost of trans-
portation may fluctuate due to changes in fuel prices. Stochastic programming
is a programming approach that can be used to deal with uncertainty in trans-
portation problems.
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Abstract

In this manuscript, we focus on the approximation of fixed points for multi-
valued nonexpansive type mappings within uniformly convex Banach spaces.
To achieve this goal, we utilize a three-step iteration scheme that was originally
introduced by Ullah et al. Furthermore, we establish the rapid convergence
properties of the Ullah et al. iteration scheme through the implementation of
numerical examples using Matlab software.

2020 MSC. 47H09, 47H10
Keywords. nonexpansive mappings, fixed point, uniformly convex Banach spaces,

Fejer monotone.

1 Introduction

In nonlinear analysis, fixed point theory has a great importance over last 90 years. In
fact the technique of fixed point also have been used in different fields such as biology,
physics, engineering, chemistry, game theory, economics, computer science etc.

Fixed point theorems are developed for both single-valued and multi-valuedd func-
tions over different spaces. Banach contraction principle [2] is one of the pioneering
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work in the field of fixed point theory and widely used to find out solution of different
problems in the field of analysis.

There are lots of fixed point results available concerning single-valued nonexpan-
sive mappings in the literature, while the study of the fixed points of multi-valued
nonexpansive mappings are difficult. The multi-valued version of Banach contraction
principle was given by Nadler [9] in 1969. Sastry and Babu [11] introduced multi-
valued version of Mann [7] and Ishikawa [5] iteration and proved convergence theorems
for nonexpansive mappings in Hilbert space. In 2016 Kim et al. [6] introduced multi-
valued version of Thakur iteration [14] proved convergence results in uniformly convex
Banach space and many more application are discussed on convergence ([17–19]).

The following three-step iteration scheme was introduced by Ullah et al. [15]-
Let M be a convex subset of a normed space B and S : M → M be a nonlinear
mapping. For w1 ∈ M, the sequence {wj} in M is defined by

tj = (1− αj)wj + αjSwj,

zj = Stj,

wj+1 = Syj, j ≥ 1,

(1.1)

where {αj} is a sequence in (0, 1). Ullah proved that their iterative process converges
faster than the iterative process given by Thakur [14].

The concept of Hausdorff metric, to approximate fixed points of multi-valued
nonexpansive mapping was introduced by Markin [8] as follows:
Let CB(M)=collection of all non-empty closed bounded subset ofM According
to [6], a multi-valued mapping S : M → CB(M) is said to be nonexpansive if

H(Sw, Sy) ≤ ||w − y||,

for all w, z ∈ M.

Following is the multi-valued version of Ullah iteration [16]. LetM be a non-empty
subset which is closed convex of a UCBS B and S : M → P (M) be a multi-valuedd
function. For w1 ∈ M, the sequence {wj} in M is given by

tj = (1− αj)wj + αjuj,

zj = wj,

wj+1 = vj, j ≥ 1,

(1.2)

where PS : M → 2M be a multi-valued mapping, uj ∈ PS(wj), vj ∈ PS(yj),
wj ∈ PS(tj), and {αj}∈ (0, 1).

In this study, we prove strong convergence of the iteration scheme given by (1.2),
to approximate fixed points for the multi-valuedd nonexpansive functions in uniformly
convex Banach space. For convinient,we denote uniformly convex Banach space by
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UCBS. We also compare iteration scheme (1.2) with multi-valued version of some well
known iteration schemes (refer [20]).

2 Preliminaries

Definition 2.1. Suppose non-empty subset M of a UCBS B and S : M → 2M is a
multi-valued functions. An element w ∈ M is known as fixed point of multi-valued
functions S, if w ∈ Sw. Trough-out the literature, we represent the set of fixed points
of S by F (S).

Definition 2.2. [6] Suppose a non-empty M subset of a UCBS B. Then M is known
as proximal if for each w ∈ B, there exists an element y ∈ M, we have

||w − z|| = d(w,M) = inf{||w − t|| : t ∈ M}.

Definition 2.3. [6] Suppose a non-empty M be subset of a UCBS B and {wj} in B
is known as Fejer monotone subset M, if

||wj+1 − p|| ≤ ||wj − q||,

for all q ∈M, j ≥ 1.

Proposition 2.1. [6] Suppose a non-empty M be subset of a UCBS B and {wj} is
Fejer monotone sequence with respect to M. Then, the followings are true:

(a) {wj} is bounded.

(b) For each w ∈ M , {||wj − w||} converges.

Note that the concept of Condition (I) in Banach space was given by Dotson and
Senter [13]. Given below are multi-valued version of Condition (I).

Definition 2.4. suppose Mbe a non-empty subset of a UCBS B. A multi-valuedd
nonexpansive function S : j → CB(M) holds Condition (I), if non-decreasing func-
tion g : [0,∞) → [0,∞) with g(0) = 0, g(r) > 0 for each r ∈ (0,∞) such that
||w − Sw|| ≥ g(d(w,F (S))) for all w ∈ M .

Lemma 2.2. [12] Suppose B be a UCBS and {αj} is a sequence in [γ, 1−γ] for some
γ ∈ (0, 1). Let {wj} and {zj} ∈ X then, lim supj→∞ ||wj|| ≤ q, lim supj→∞ ||zj|| ≤ q,
and lim supj→∞ ||αjwj+(1−αj)yj|| = q for some q ≥ 0. Then limj→∞ ||wj−zj|| = 0.

Lemma 2.3. [3] suppose S : M → P (M) is a multi-valuedd function with F (S) ̸= ∅
and let PS : M → 2M be a multi-valued function given by

PS(w) = {z ∈ Sw : ||w − z|| = d(w, Sw)}, w ∈ M.

Then the following conclusion holds:

(a) PS is multi-valuedd function from M → P (M).
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(b) F (S) = F (PS).

(c) PS(q) = {q}, for every q ∈ F (S).

(d) For each w ∈ M , PS(w) and Sw is a compact because its a closed.

(e) d(w, Sw) = d(w,PS(w)) for each w ∈ M.

3 Primary result

Lemma 3.1. Considering M be a non-empty closed convex subset of a UCBS B. Let
S : M → P (M) be a multi-valuedd function such that F (S) ̸= ∅, and PS : M → 2M

be a multi-valuedd nonexpansive function. Let {wj} be a sequence in M given by
(1.2), then limj→∞ ||wj − t|| exists for all t ∈ F (S).

Proof. By our assumption, that F (S) ̸= ∅, so suppose that t ∈ F (S). Then, by
Lemma 2.3, we have t ∈ PS(t) = {t}. Also by Hausdorff metric, we have

H(PS(wj), PS(t)) = max{sup d(uj, PS(t)), sup d(PS(wj), t)},

where d(uj, PS(t)) = inft∈PS(t) ||uj − t||.
By (1.2) we have,

||tj − t|| = ||(1− αj)wj + αjuj − t||
≤ (1− αj)||wj − t||+ αj||uj − t||
≤ (1− αj)||wj − t||+ αjH(PS(wj), PS(t))

≤ (1− αj)||wj − t||+ αj||wj − t|| = ||wj − t||,

||zj − t|| = ||wj − t||
≤ H(PS(tj), PS(t))

≤ ||tj − t||,

and

||wj+1 − t|| = ||vj − t||
≤ H(PS(zj), PS(t))

≤ ||zj − t||
≤ ||wj − t||.

It follows that the sequence {wj} is a Fejer monotone with respect to F (S). Hence
from the Proposition 2.1, sequence {wj} is bounded and limj→∞ ||wj − t|| exists for
all t ∈ F (S).

4
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Lemma 3.2. Let M be a non-empty closed convex subset of a UCBS B. Let S :
M → P (M) be a multi-valued mapping such that F (S) ̸= ∅, and PS : M → 2M be a
multi-valued nonexpansive mapping. Let {wj} be a sequence in M defined by (1.2),
then limj→∞ d(wj, Swj) = 0.

Proof. By Lemma 3.1, we have limj→∞ ||wj−t|| exists for all t ∈ F (S). Let limj→∞ ||wj−
t|| = a. If a = 0, then

d(wj, Swj) ≤ ||wj − uj||
≤ ||wj − t||+ ||t− uj||
≤ ||wj − t||+H(PS(wj), PS(t))

≤ 2||wj − t|| → 0 as j → ∞.

Let a > 0. Since limj→∞ ||wj − t|| = a, we have lim supj→∞ ||wj − t|| ≤ a. Also

||zj − t|| ≤ ||wj − t|| ⇒ lim sup
j→∞

||zj − t|| ≤ a.

In addition to,

lim sup
j→∞

||uj − t|| ≤ lim sup
j→∞

H(PS(wj), PS(t))

≤ lim sup
j→∞

||wj − t||

≤ a.

Also

lim sup
j→∞

||vj − t|| ≤ lim sup
j→∞

H(PS(zj), PS(t))

≤ lim sup
j→∞

||zj − t||

≤ a.

Here, for each {αj} in [γ, 1− γ] for some γ ∈ (0, 1), one has

lim sup
j→∞

||αj(wj − t) + (1− αj)(uj − t)|| ≤ αj lim sup
j→∞

||wj − t||

+ (1− αj) lim sup
j→∞

||uj − t||

≤ a.

Hence, from Lemma 2.2, we have limj→∞ ||(wj − t)− (uj − t)|| = 0, i.e., limj→∞ ||wj −
uj|| = 0 .
Since

d(wj, Swj) ≤ ||wj − uj||,
we have

lim
j→∞

d(wj, Swj) = 0.

5
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Theorem 3.3. Consider M is a non-empty closed convex subset of a UCBS X. Let
S : M → P (M) be a multi-valued mapping such that it satisfy Condition (I). Let
F (S) ̸= ∅, and PS : M → 2M be a multi-valued nonexpansive function. Then the
sequence {wj} defined by (1.2), strongly converges to a fixed point of S.

Proof. By Lemma 3.1, one has

||wj+1 − t|| ≤ ||wj − t||,

it gives that
d(wj+1, F (S)) ≤ d(wj, F (S)).

This implies that limj→∞ d(wj, F (S)) exists. Since S satisfy Condition (I) and by
Lemma 3.2, we have limj→∞ d(wj, Swj) = 0, we have limj→∞ d(wj, F (S)) = 0.
Next we prove that {wj} is Cauchy sequence inM . As, we have limj→∞ d(wj, F (S)) =
0 and ϵ > 0, there is a constant j0 for all j ≥ j0, one has

d(wj, F (S)) <
ϵ

4
.

In particular and must p ∈ F (S) then we obtain

||wj0 − p|| < ϵ

2
.

For j,m ≥ j0, we obtain

||wj+m − wj|| ≤ ||wj+1 − p||+ ||p− wj||
< ϵ.

It follows that {wj} is a Cauchy sequence in M. Since M is closed subset of UCBS
B, it must converges in M and w ∈ M thus limj→∞ ||wj − w|| = 0. Now

0 ≤ d(w,PS(w)) ≤ ||wj − w||+ d(wj, PS(wj)) +H(PS(wj), PS(w))

≤ ||wj − w||+ ||wj − uj||+ ||wj − w|| → 0 as j → ∞.

So d(w,PS(w)) = 0. By Lemma 2.2, F (PS) is closed, therefore w ∈ F (PS) = F (S).

Theorem 3.4. Consider M is a non-empty closed convex subset of a UCBS B and
S : M → P (M) be a multi-valuedd function with F (S) ̸= ∅, and PS : M → 2M

is a multi-valuedd nonexpansive function. Then, the sequence {wj} given by (1.2),
strongly converges to a fixed point of S if and only in lim infj→∞ d(wj, F (S)) = 0.

Proof. If lim infj→∞ d(wj, F (S)) = 0, then it is obvious that the sequence {wj}
strongly converges to a fixed point of S.
For the conversation, suppose that lim infj→∞ d(wj, F (S)) = 0, then limj→∞ d(wj, F (S)) =
0. Using similar argument of the proof as in Theorem 3.3, we obtain that {wj} is a
Cauchy sequence in M. Let limj→∞ wj = q. Then

0 ≤ d(q, PS(q)) ≤ ||wj − q||+ d(wj, PS(wj)) +H(PS(wj), PS(q))

≤ ||wj − q||+ ||wj − uj||+ ||wj − q|| → 0 as j → ∞.

It follows that d(q, PS(w)) = 0. Since F (PS) is closed, therefore q ∈ F (PS) = F (S).

6
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4 Numerical example

Example 4.1. Let B = R be a UCBS, with ||.|| is produced by a metric d such that
d(w, y) = ||w − z||, for all w, y ∈ B. Let M = [0, 1] be a non-empty subset of B. Let
S : M → P (M) defined by

Sx =

{
[0, w+1

2
], w ∈ [0, 1

2
),

{0}, w ∈ [1
2
, 1).

Consider the following cases:

Case I: when w ∈ [1
2
, 1). Then F (S) = {0} and from Lemma 2.3, we have

F (S) = {0} = F (PS) and PS(0) = {0}.

Case II: when w ∈ [0, 1
2
). Then F (S) = [0, w+1

2
]. Now

PS(w) = {z ∈ Sw : d(w, Sw) = ||z − w||}

PS(w) = {z ∈ Sw : ||z − w|| = d(w, [0,
w + 1

2
])}

= {z ∈ Sw : ||z − w|| = ||w − w + 1

2
||}

= {z ∈ Sw : ||z − w|| = ||w − 1

2
||}

= {z =
w + 1

2
}

Therefore, we have F (S) = F (PS) = [0, w+1
2
]

Next, we show that a sequence {wj} ∈ M given by (1.1) converges strongly to a
point of F (S).
Start with initial value w1 =

1
2
and choose αk =

2
3
, then we have

PS(w1) = {w1 + 1

2
} = {3

4
}.

Choose u1 ∈ PS(w1), then u1 =
3
4
. Now

z1 = (1− α1)w1 + α1u1

=
1

6
+

1

2

=
2

3
.

PS(t1) = {z1 + 1

2
} =

5

6
.

Choose w1 ∈ PS(t1), then w1 = 5
6
. Hence z1 = w1 = 5

6
. Choose v1 ∈ PS(z1) =

{ z1+1
2

} = 11
12
.

7
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Choose w2 = v1 = 11
12
, then doing same procedure, we have u2 = 23

24
, t2 = 17

18
,

z2 = w2 = 35
36

and w3 = v2 = 71
72
. Continuing the process, we get that w1 < 1,

w2 < 1,...wn < 1, .... Hence, we conclude that sequence {wk} ∈ M given by (1.2)
converges strongly to a point of F (S).

Here we show the fastness of the iteration scheme (1.2) by comparing some well
known iteration schemes with the help of some given below examples.

Example 4.2. Let B = R convex Banach space which is uniformly, equipped with ||.||
is produced by a metric d thus d(w, z) = ||w − z||, for all w, z ∈ B. Let M = [0,∞)
be a non-empty subset of B. Let S : M → P (M) defined by

Sw =


{0}, w ∈ [0, 1

100
) = A

′
,

[0, w
5
], w ∈ [ 1

100
,∞)− {8

7
} = B

′
,

[0, 9
10
], w ∈ {8

7
} = C

′
.

We prove that S is multi-valued nonexpansive functions. Consider the following cases

Case I: when w, z ∈ A
′
and w, z ∈ C

′
, then it is clear that H(Sw, Sz) ≤ ||w− z||.

Case II: when w, z ∈ B
′
, then

H(Sw, Sz) = H([0,
w

5
], [0,

z

5
])

= ||w
5
− z

5
||

=
1

5
||w − z|| < ||w − z||.

Case III: when w ∈ A
′
and z = 8

7
. Then H(Sw, Sz) = H({0}, [0, 9

10
]) = 9

10
< 1 =

|w − z||.

Case IV: when w ∈ B
′
and z = 8

7
. Then

||w − z|| = d(w, z) = d(w,
8

7
)

= ||w − 8

7
||

≤ ||w||+ 8

7
.

and

H(Sw, Sy) = H([0,
w

5
], [0,

9

10
])

= ||w
5
− 9

10
||

≤ ||w
5
||+ 9

10
.

8
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Clearly H(Sw, Sy) ≤ ||w − z||.

Case V: when w ∈ A
′
and z ∈ B

′
. Then

H(Sw, Sy) = H({0}, [0, z
5
])

= ||z
5
|| < ||z||

< ||w||+ ||z||
= ||w − z||.

Hence, we conclude that S is multi-valued nonexpansive mapping.

Now with the help of Matlab software program, we compare iteration scheme (1.2)
with multi-valued version of different iteration schemes given in [20].

Table 1: Strong convergence of multivalued version of Ullah (1.2), Abbas [1],
Ishikawa [5], Noor [10], Picard S [4] and Thakur [6] iterations to the fixed point

x = 0 of S in Example 4.2.

Iteration Ullah Thakur Abbas Noor Ishikawa Picard S
0 0.50000000 0.50000000 0.50000000 0.50000000 0.50000000 0.50000000
1 -0.01200000 -0.04400000 - 0.02800000 -0.58800000 -0.62000000 -0.09999911
2 0.00009600 0.00140800 0.00078400 0.32222400 0.34720000 -0.02000009
3 -0.00000026 -0.00002378 -0.00001417 -0.11466401 -0.12190578 0.00240000
4 0.00000000 0.00000024 0.00000018 0.03009930 0.03047644 -0.00005333
5 0.00000000 -0.00000000 -0.00000000 -0.00623946 -0.00580272 0.00000213
6 0.00000000 0.00000000 0.00000000 0.00106579 0.00087685 -0.00000017
7 0.00000000 0.00000000 -0.00000000 -0.00015444 -0.00010809 0.00000001
8 0.00000000 0.00000000 0.00000000 -0.00001939 0.00001108 -0.00000000

9
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Figure 1. Behavior of Ullah iteration (magenta), Thakur iteration (carrot orange),
Abbas iteration (yellow), Noor iteration (purple), Ishikawa iteration (green), Picard

S iteration (cyan) to the fixed point x = 0 of the mapping S .
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Abstract

Numerous prior publications on fractional calculus provide fascinating expla-
nations of the theory and applications of fractional calculus operators throughout
various mathematical analytic domains. In this paper, we introduce new fractional
integral formulas using the Saigo-Maeda fractional integral operators and Appell’s
function F3 along with the Srivastava polynomials, the (p,q)-extended Gauss hy-
pergeometric function, and the M-Series. A few fascinating unusual cases of our
main conclusions are also considered. This approach can be applied to explore a
broad class of previously dispersed discoveries in the literature.

Key Words: (p, q)-Extended Gaussı́s hypergeometric function, Srivastava polynomials, (p,
q)-Extended Beta function, S-Function, Generalized fractional integral operators.
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1 Introduction
Over the past three decades, the field of fractional calculus has dealt with derivatives and inte-
grals of arbitrary orders, and it has been applied to nearly every branch of science and engineer-
ing. Recently, a large number of scholars have investigated higher transcendent hypergeometric
type special functions [10, 11, 28] and associated extensions, generalizations, and unifications
of Euler’s Beta function (refer [1], [2], [3], [7], [8], [9], [12], [13], [16], [19], [21], [24]). In
particular, Chaudhry et al. [2, p. 20, Equation (1.7)] represented the extension of the Beta
function as

B(x,y; p) =
∫ 1

0
(ξ )x−1(1−ξ )y−1exp(

−p
ξ (1−ξ )

)dξ ,ℜ(p)> 0 (1.1)

where f or p = 0, min(ℜ(x),ℜ(y))> 0
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Chaudhry et al. [3] explored the relationships between the Beta function B(ξ ,ζ ; p), Error
function, Whittaker function and Macdonald function (or modified Bessel function of the sec-
ond kind). Moreover, the extended version of the Gaussian hypergeometric function was also
derived by utilising (1.2) as -

Fp(a,b,c;ξ ) =
∞

∑
n≥0

(a)n
B(b+n,c−b; p)

B(b,c−b)
(ξ )n

n!
(1.2)

p > 0; for p = 0, |ξ |< 1;ℜ(c)> ℜ(b)> 0
A recent expansion of B(x,y; p) and Fp(a,b,c;z) was presented by Choi et al. [4] in the

following way

B(x,y; p,q) =
∫ 1

0
(ξ )x−1(1−ξ )y−1exp(

−p
ξ

− q
(1−ξ )

)dξ (1.3)

provided min(ℜ(p),ℜ(q))≥ 0,min(ℜ(x),ℜ(y))> 0
and

Fp,q(a,b;c;ξ ) =
∞

∑
n≥0

(a)n
B(b+n,c−b; p,q)

B(b,c−b)
ξ n

n!
(1.4)

provided p,q ≥ 0;for p=0, |ξ |< 1;ℜ(c)> ℜ(b)> 0
For further information on (1.3) and (1.4), see [23].

The goal of this inquiry is to comprehend the concept of the convolution of two analytical
functions, generally known as the Hadamard product. A newly discovered function can be
divided into two different functions. The Hadamard product series, in particular, defines a full
function if a power series reflects an entire function. Let

f (z) =
∞

∑
n=0

anξ
n, |ξ |< R f and g(ξ ) =

∞

∑
n=0

bnξ
n, |ξ |< Rg

Considering two given power series with, respectively, R f and Rg as their radii of conver-
gence. They produce a Hadamard product, which is a power series described by

( f ∗g)(ξ ) =
∞

∑
n=0

anbnξ
n = (g∗ f )(ξ ), |ξ |< R (1.5)

where R is the radius of convergence

1
R
= lim

n→0
sup(|anbn|)

1
n ≤ lim

n→0
sup(|an|)

1
n lim

n→0
sup(|bn|)

1
n =

1
R f Rg

and so R > (R f Rg) (see[15]).

Srivastava [22] defined polynomials of general class in the following way

Su
w =

[w
u ]

∑
s=0

(−w)us

s!
Aw,s xs,u ∈ N,s ∈ N0 (1.6)
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Where N0 = N∪{0}, and the coefficients Aw,s, w,s ∈ N0,w,s > 0 are arbitrary constants
either real or complex. The polynomial family S[wx] exhibits several well-known polynomials
in addition to its distinct cases when the coefficient Aw,s. is suitably specialised.

Parmar and Purohit [14] recently explored certain formulae for fractional integral connected
to Saigo operators, Furthermore, Choi et al. [4] stated the extended form of hypergeometric
functions Fp,q(ξ ) [26]. In this work, we explored some novel fractional integral formulas in-
volving (p,q)–extended Beta function, (p,q)–extended Gauss’s hypergeometric function, the
general class of polynomial, and M-Series developed employing generalized fractional integral
operators.

2 Fractional Integral Approach
Fractional integral operators involving several special functions [29,30] have been extensively
researched in numerous mathematical tools (see, [6]). We explore here the Saigo and Maeda
generalized fractional integral operators involving Appell function F3(.)[18] in the kernel.

The extended fractional integrals incorporating Appell’s function [22] are stated as, Assum-
ing, µ,µ ′,ν ,ν ′,τ ∈ C and x > 0, then

(Iµ,µ ′,ν ,ν ′,τ
0,+ f )(x) =

x−µ

Γ(τ)

∫ x

0
(x−ξ )τ−1

ξ
−µ ′

F3(µ,µ
′,ν ,ν ′;τ;1− ξ

x
,1− x

ξ
) f (ξ )dt;ℜ(τ)> 0

(2.1)
and

(Iµ,µ ′,ν ,ν ′,τ
0,− f )(x) =

x−µ

Γ(τ)

∫
∞

x
(ξ − x)τ−1

ξ
−µF3(µ,µ

′,ν ,ν ′;τ;1− x
ξ
,1− ξ

x
) f (ξ )dt;ℜ(τ)> 0

(2.2)
We will first express a few image formulas related to (2.1) and (2.2), which are given in the

lemma that follows.

Lemma 1

Let µ,µ ′,ν ,ν ′,τ ∈ C and x > 0, Then
(a) If ℜ(ε)> max(0,ℜ(µ +µ ′+ν ′− τ),ℜ(µ ′−ν ′)) and ℜ(τ)> 0

(Iµ,µ ′,ν ,ν ′,τ
0,+ xε−1)(x) = xε−µ−µ ′+τ−1

Γ

[
ε,ε + τ −µ −µ ′−ν ,ε +ν ′−µ ′

ε +ν ′,ε + τ −µ −µ ′,ε + τ −µ ′−ν

]
(2.3)

(b) If ℜ(ε)< 1+min(ℜ(−v),ℜ(µ +µ ′+ν ′− τ),ℜ(µ ′−ν ′)) and ℜ(τ)> 0

(Iµ,µ ′,ν ,ν ′,τ
0,− xε−1)(x) = xε−µ−µ ′+τ−1

Γ

[
1− ε −ν ,1− ε +µ +µ ′,1− ε − τ +µ +ν ′

1− ε,1− ε +µ +µ ′+ν ′− τ,1− ε +µ −ν

]
(2.4)
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The symbols occurring in (2.3) and (2.4) are presented as

Γ

[
a1,a2,a3
a4,a5,a6

]
=

Γ(a1)Γ(a2)Γ(a3)

Γ(a4)Γ(a5)Γ(a6)

The composition formulas for generalized fractional integrals (2.3) and (2.4) now involve gen-
eralized Gauss hypergeometric type functions Fp,q(a,b;c;ξ ), and the general class of polyno-
mials [25], M-Series[20] are given in Theorem 3.1 and 3.2.
The M-Series is defined as

Mℑ,ε
p′,q′ =

∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

1
Γ(ℑl + ε)

(2.5)

Here α j,β j and (α j)l,(β j)l are pochhammer symbols. the series is defined by (2.5), where
neither a negative integer nor zero can be found in any of the denominator parameters β j,
j = 1,2, . . .q′. If any parameter α j < 0, j = 1,2, ..., p′, then the series converts to a polynomial
in x. The series is convergent for all x when q′ ≥ p′, and p′ = q′+1, mod x < 1. The series is
divergent when p′ ≥ q′+1.

3 Main Results
In this paper, two new results are developed via generalized fractional operators, which involve
Srivastava Polynomials [25], (p,q) - extended Gaussı́s Hypergeometric function [17, 22] and
M-Series [20]. Further, their consequences are also mentioned in the form of simpler functions
as special cases of these results

Theorem 3.1

Let µ,µ ′,ν ,ν ′,τ,ε ∈C be such that min(ℜ(p,q))> 0,ℜ(τ)> 0 and ℜ(ε+s)>max[0,ℜ(µ+
µ ′+ν − τ),ℜ(µ ′−ν ′)] then for x > 0

(
Iµ,µ ′,ν ,ν ′,τ
0,+

[
ξ ε−1Su

W (σξ )Fp,q

[
a,b

c ;eξ

]
Mℑ,ε

p′,q′(ξ
λ

] )
(x)

= xε+λ l−µ−µ ′+τ−1
[w

u ]

∑
s=0

(−w)us

s!
Aw,s(σx)s

∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

1
Γ(ℑl + ε)

× Γ(ε +λ l + s)Γ(ε +λ l + τ −µ −µ ′−ν + s)Γ(ε +λ l +ν ′−µ ′+ s)
Γ(ε +λ l +ν ′+ s)Γ(ε +λ l + τ −µ −µ ′+ s)Γ(ε +λ l + τ −µ ′−ν + s)

×Fp,q

[
a,b

c ;ex
]
∗4 F3

[
1,θ1,θ2,θ3

θ4,θ5,θ6
;ex

]
(3.1)

where
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θ1 = ε +λ l + s,θ2 = ε +λ l + τ −µ −µ
′−ν + s,

θ3 = ε +λ l +ν
′−µ

′+ s,θ4 = ε +λ l + τ −µ −µ
′+ s,

θ5 = ε +λ l + τ −µ
′−ν + s,θ6 = ε +λ l +ν

′+ s

and ′∗′ signifies the Hadamard product

Proof.
Applying (1.4) and (1.6) to (2.1) and changing the order of integration and summation, which
is valid under the given conditions here, and using (2.3), we find the LHS of (3.1) (say L) as

L =
[w

u ]

∑
s=0

∞

∑
n=0

(−w)us

s!
Aw,s(σ)s(a)n

∞

∑
l=0

(α1)l...(α
′
p

(β1)l...(β ′
q)l

1
Γ(ℑl + ε)

Bp,q(b+n,c−b)
B(b,c−b)

en

n!

×
(

Iµ,µ ′,ν ,ν ′,τ
0,+ (t)ε+n+λ l+s−1

)
(x)

= (x)ε+λ l−µ−µ ′+τ−1
[w

u ]

∑
s=0

∞

∑
n=0

(−w)us

s!
Aw,s(σ)s(a)n

∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

1
Γ(ℑl + ε)

Bp,q(b+n,c−b)
B(b,c−b)

× Γ(ε +λ l +n+ s)Γ(ε +λ l +n+ τ −µ −µ ′−ν + s)Γ(ε +λ l +n+ν ′−µ ′+ s)
Γ(ε +λ l +n+ν ′+ s)Γ(ε +λ l +n+ τ −µ −µ ′+ s)Γ(ε +λ l +n+ τ −µ ′−ν + s)

(ex)n

n!
(3.2)

Expressing the last summation in (3.2) in terms of the Hadamard product with the functions
Fp,q(.) mentioned in (1.4) and generalized hypergeometric function [22, 24], we obtain the
RHS of (3.1).

Theorem 3.2

Let µ,µ ′,ν ,ν ′,δ ,ρ ∈ C be such that min(ℜ(p),ℜ(q)) > 0,ℜ(δ ) > 0 and ℜ(ρ) < 1+
min[ℜ(−v),ℜ(µ +µ ′−δ ),ℜ(−µ −ν −δ )] then for x > 0

(
Iµ,µ ′,ν ,ν ′,τ
0,−

[
ξ ε−1Su

W (σξ )Fp,q

[
a,b

c ; e
ξ

]
Mℑ,ε

p′,q′(ξ
λ

] )
(x)

= xε+λ l−µ−µ ′+τ−1
[w

u ]

∑
s=0

(−w)us

s!
Aw,s(σ ,s)s

∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

1
Γ(ℑl + ε)

× Γ(1−ν − ε −λ l − s)Γ(1+µ +ν ′− ε −λ l − s)Γ(1+µ +ν ′− ε −λ l − s)
Γ(1− ε −λ l − s,)Γ(1+µ +µ ′+ν ′− τ − ε −λ l − s)Γ(1+µ −ν − ε −λ l − s)
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×Fp,q

[
a,b

c ;
e
x

]
∗4 F3

[
1,δ1,δ2,δ3

δ4,δ5,δ6
;
e
x

]
(3.3)

where

δ1 = 1−ν − ε −λ l − s,δ2 = 1+µ +ν
′− ε −λ l − s,

δ3 = 1+µ +ν
′− ε −λ l − s,δ4 = 1− ε −λ l − s

δ5 = 1+µ +µ
′+ν

′− τ − ε −λ l − s,δ6 = 1+µ −ν − ε −λ l − s

and ′∗′ signifies the Hadamard product

Proof. Applying a similar argument as in the proof of Theorem 3.1 by using (1.4) and (1.6) to
(2.2), and using (2.4), we obtain the RHS of (3.3).

4 Special Cases
(i) If we set µ ′ = ν ′ = 0,ν =−η ,µ = µ +ν ,δ = µ,ℜ(µ)> 0 in the operators (2.1) and (2.2),
then we arrive at Saigo hypergeometric fractional integral operators [6](

Iµ,ν ,η
0,+ f (ξ )

)
(x) =

x−µ−ν

Γ(µ)

∫ x

0
(x−ξ )µ−1

2F1

(
µ +ν ,−η ; µ;(1− ξ

x )
)

f (ξ )dξ (4.1)

and(
Iµ,ν ,η
0,− f (ξ )

)
(x) =

x−µ−ν

Γ(µ)

∫
∞

x
(ξ − x)µ−1

2F1

(
µ +ν ,−η ; µ;(1− x

ξ
)
)

f (ξ )dξ (4.2)

Corollary 1. Let µ,µ ′,η ,ρ ∈ C be such that min(ℜ(p),ℜ(q))> 0,ℜ(µ)> 0 and
ℜ(ρ)> max[0,ℜ(ν −η)], x > 0

then the result (3.1) reduced as

(
Iµ,ν ,η
0,+

[
tε−1Su

w(σξ )Fp,q

[
a,b

c ;eξ

]
Mℑ,ε

p′,q′(ξ
λ

] )
(x)

= xε+λ l−ν−1
[w

u ]

∑
s=0

(−w)us

s!
Aw,s(σx)s

∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

1
Γ(ℑl + ε)

× Γ(ε +λ l + s)Γ(ε +λ l −ν +η + s)
Γ(ε +λ l +µ +η + s)Γ(ε +λ l −ν + s)

×Fp,q

[
a,b

c ;ex
]
∗3 F2

[
1,ε +λ l + s,ε +λ l −ν +η + s
ε +λ l −ν + s,ε +λ l +µ +η + s ;ex

]
(4.3)
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Corollary 2 Let µ,ν ,η ,ρ ∈ C be such that min(ℜ(p),ℜ(q))> 0,ℜ(µ)> 0 and
ℜ(ρ)< 1+min[ℜ(η),ℜ(ν)] as

(
Iµ,ν ,η
0,−

[
ξ ε−1Su

W (σξ )Fp,q

[
a,b

c ; e
ξ

]
Mℑ,ε

p′,q′(ξ
λ

] )
(x)

= xε+λ l−ν−1
[w

u ]

∑
s=0

(−w)us

s!
Aw,s(σx)s

∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

1
Γ(ℑl + ε)

× Γ(1− ε −λ l +n+ν − s)Γ(1− ε −λ l +η − s)
Γ(1− ε −λ l − s)Γ(1− ε −λ l +η +µ +ν − s)

×Fp,q

[
a,b

c ;
e
x

]
∗3 F2

[
1,1− ε −λ l +ν − s,1− ε −λ l +η − s
1− ε −λ l − s,1− ε −λ l +η +µ +ν − s ;

e
x

]
(4.4)

(ii) The operator Iµ,ν ,η
0,+ (.) contains both the Riemann-Liouville Iµ

0−(.) and the Erdélyi-Kober
[5] I+η ,µ(.) fractional integral operators which can be defined as

(
Iµ

0,+ f (ξ )
)
(x) =

(
Iµ,−µ,η
0,+ f (ξ )

)
(x) =

1
Γ(µ)

∫ x

0
(x−ξ )µ−1 f (ξ )dξ (4.5)

and

(
I+η ,µ f (ξ )

)
(x) =

(
Iµ,0,η
0,+ f (ξ )

)
(x) =

(x)−µ−η

Γ(µ)

∫ x

0
(x−ξ )µ−1(ξ )n f (ξ )dξ (4.6)

Corollary 3. Let µ,η ,ρ ∈ C be such that min(ℜ(p),ℜ(q))> 0,ℜ(µ)> 0 and
ℜ(ρ + s)> ℜ(−η), x > 0

By using (4.6), the result (3.1) reduced as

(
I+η ,µ

[
ξ ε−1Su

w(σξ )Fp,q

[
a,b

c ;eξ

]
Mℑ,ε

p′,q′(ξ
λ

] )
(x)

= xε+λ l−1
[w

u ]

∑
s=0

(−w)us

s!
Aw,s(σx)s

∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

1
Γ(ℑl + ε)

× Γ(ε +λ l +η + s)
Γ(ε +λ l +µ +η + s)

×Fp,q

[
a,b

c ;ex
]
∗2 F1

[
1,ε +λ l +η + s

ε +λ l +µ +η + s, ;ex
]

(4.7)

(iii) It can be observed that the operator (4.2) unifies the Erdélyi-Kober fractional operators
with the Weyl type as follows:
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(
Iµ

− f (ξ )
)
(x) =

(
Iµ,−µ,η
− f (ξ )

)
(x) =

1
Γ(µ)

∫
∞

x
(ξ − x)µ−1 f (ξ )dξ (4.8)

and

(
K−

η ,µ f (ξ )
)
(x) =

(
Iµ,0,η
− f (ξ )

)
(x) =

(x)−µ−η

Γ(µ)

∫
∞

x
(ξ − x)µ−1(ξ )−µ−η f (ξ )dξ (4.9)

Corollary 4. Let µ,η ,ρ ∈ C be such that min(ℜ(p),ℜ(q))> 0,ℜ(µ)> 0 and
ℜ(ρ + s)< 1+ℜ(η),x > 0 By using (4.9), the result (3.3) reduced as

(
K−

η ,µ

[
ξ ε−1Su

w(σξ )Fp,q

[
a,b

c ;eξ

]
Mℑ,ε

p′,q′(ξ
λ

] )
(x)

= xε+λ l−1
[w

u ]

∑
s=0

(−w)us

s!
Aw,s(σx)s

∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

1
Γ(ℑl + ε)

× Γ(ε +λ l +η + s)
Γ(ε +λ l +µ +η + s)

×Fp,q

[
a,b

c ;ex
]
∗2 F1

[
1,ε +λ l +η + s

ε +λ l +µ +η + s, ;ex
]

(4.10)

(iv) Additionally, on replacing ν by −µ in Corollary 1 and 2 and making use of the relations
(4.5) and (4.8) give the other Riemann-Liouville and Weyl fractional integrals of the extended
hypergeometric function in (1.4) are provided by the following corollaries

Corollary 5. Let µ,ρ ∈ C be such that min(ℜ(p),ℜ(q)) > 0,ℜ(µ) > 0 , x > 0 By using
(4.5), the result (3.1) reduced as

(
Iµ

0,+

[
ξ ε−1Su

w(σξ )Fp,q

[
a,b

c ;eξ

]
Mℑ,ε

p′,q′(ξ
λ

] )
(x)

= xε+λ l+µ−1
[w

u ]

∑
s=0

(−w)us

s!
Aw,s(σx)s

∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

1
Γ(ℑl + ε)

×Γ(ε +λ l +µ +η + s)
Γ(ε +λ l +µ + s)

×Fp,q

[
a,b

c ;ex
]
∗2 F1

[
1,ε +λ l + s

ε +λ l +µ + s, ;ex
]

(4.11)

Corollary 6. Let µ,ρ ∈ C be such that min(ℜ(p),ℜ(q)) > 0,ℜ(µ) > 0 , x > 0 By using
(4.8), the result (3.3) reduced as

(
Iµ

−

[
ξ ε−1Su

w(σξ )Fp,q

[
a,b

c ; e
ξ

]
Mℑ,ε

p′,q′(ξ
λ

] )
(x)
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= xε+λ l+µ−1
[w

u ]

∑
s=0

(−w)us

s!
Aw,s(σx)s

∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

1
Γ(ℑl + ε)

×Γ(1− ε −λ l −µ − s)Γ(1− ε −λ l +η − s)
Γ(1− ε −λ l − s)Γ(1− ε −λ l −η − s)

×Fp,q

[
a,b

c ;
e
ξ

]
∗3 F2

[
1,1− ε −λ l −µ − s,1− ε −λ l +η − s

1− ε −λ l − s,1− ε −λ l −η − s ;
e
ξ

]
(4.12)

(v) If we emphasise in our conclusion that the general class of polynomials yields numerous
well-known classical orthogonal polynomials as its particular cases when appropriate unique
values are provided for the coefficient Aw,s.More specifically, if we set w = 0, A0,0 = 1 then
Su

w = 1 in (3.1) and (3.3), we gain the fresh findings claimed in corollaries 7 and 8 as

Corollary 7. Let µ,µ ′,ν ,ν ′,δ ,ρ ∈ C be such that min(ℜ(p),ℜ(q)) > 0,ℜ(δ ) > 0 and
ℜ(ρ + s)> max[0,ℜ(µ +µ ′+ν −δ ),ℜ(µ ′−ν ′)],x > 0
then the result (3.1) reduced as

(
Iµ,µ ′,ν ,ν ′,τ
0,+

[
ξ ε−1Fp,q

[
a,b

c ;eξ

]
Mℑ,ε

p′,q′(ξ
λ )

] )
(x)

= xε+λ l−µ−µ ′+τ−1
∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

(ε ′)lτ,k

Γk(σ l +η)

1
l!

× Γ(ε +λ l)Γ(ε +λ l + τ −µ −µ ′−ν)Γ(ε +λ l +ν ′−µ ′)

Γ(ε +λ l + τ −µ −µ ′)Γ(ε +λ l + τ −µ ′−ν)Γ(ε +λ l +ν ′)

×Fp,q

[
a,b

c ;ex
]
∗4 F3

[
1,θ7,θ8,θ9
θ10,θ11,θ12

;ex
]

(4.13)

where
θ7 = ε +λ l,θ8 = ε +λ l + τ −µ −µ ′−ν ,
θ9 = ε +λ l +ν ′−µ ′,θ10 = ε +λ l + τ −µ −µ ′,
θ11 = ε +λ l + τ −µ ′−ν ,θ12 = ε +λ l +ν ′

Corollary 8. Let µ,µ ′,ν ,ν ′,δ ,ρ ∈ C be such that min(ℜ(p),ℜ(q)) > 0,ℜ(δ ) > 0 and
ℜ(ρ)< 1+min[ℜ(−ν),ℜ(µ +µ ′−δ ),ℜ(µ −ν ′−δ )],x > 0 then the result (3.3) reduced as

(
Iµ,µ ′,ν ,ν ′,τ
−

[
ξ ε−1Fp,q

[
a,b

c ; e
ξ

]
Mγ,ζ

p′,q′(ξ
λ )

] )
(x)

= xε+λ l−µ−µ ′+τ−1
∞

∑
l=0

(α1)l...(αp′)l

(β1)l...(βq′)l

(ε ′)lτ,k

Γk(σ l +η)

1
l!
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×Γ(1+µ +µ ′− τ − ε −λ l)Γ(1+µ +ν ′− τ − ε −λ l)Γ(1−ν − ε −λ l)
Γ(1− ε −λ l)Γ(1+µ +µ ′+ν ′− τ − ε −λ l)Γ(1+µ −ν − ε −λ l)

×Fp,q

[
a,b

c ;
e
x

]
∗4 F3

[
1,θ13,θ14,θ15

θ16,θ17,θ18
;
e
x

]
(4.14)

where
θ13 = 1+µ +µ ′− τ − ε −λ l,θ14 = 1+µ +ν ′− τ − ε −λ l,
θ15 = 1−ν − ε −λ l,θ16 = 1− ε −λ l,
θ17 = 1+µ +µ ′+ν ′− τ − ε −λ l,θ18 = 1+µ −ν − ε −λ l

(vi) Also, it is interesting to note that if we set w = 0, A0,0 = 1 and Su
W = 1, the results

obtained in Corollaries 1 to 6, yield corresponding results given due to Parmar and Purohit [14].
If we set u = 2 and Aw,s = (−1)s, then the general class of polynomials become

Su
w[x]→ xu/2 Hw(

1
2
√

x
)

Hw(x) denotes the well known Hermite polynomials and are defined by

Hw(x)=∑
[u/2]
s=0 (−1)s w

(w−2s)!s!(2x)w−2s

Conclusion

Our findings are significant because of their broad applicability. Given the universality of
Srivastava’s polynomial and hypergeometric function, we can obtain multiple results compris-
ing a fairly large variety of useful functions and their various special instances by specialising
the various parameters. As a result, the main result described in this article would yield a very
large number of results containing a wide range of simpler special functions happening in sci-
entific and technological disciplines all at once. This study involves the establishment of two
formulas involving specific special functions through the use of generalised fractional integral
operators. Several novel and well-known results are produced as a result of their further rami-
fications, and it is projected that these results will have an impact on numerous applied science
fields.
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Abstract

This manuscript proposes a generalization of weak convergence and
study of fixed point in a real Hilbert space for quasi-nonexpanding maps.
In this work, we introduce a class of fixed points theorems for nonexpan-
sive mapping and generalized form of nonexpansive mapping under the
Hilbert space. In addition, we obtained under quasi nonexpansive map-
ping weak convergence with respect to Hilbert space by Mann’s Type.
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1

1 Introduction

A significant area of research in pure as well as applied mathematics is
fixed point theory. The Fixed-Point Theory has many applications in various
fields namely Approximation Theory, Integral Equations, Game Theory, Opti-
mization, Economics, and several others [1]. How to solve nonlinear equations
like Tx = 0 is one of the fundamental issues in mathematics. We can utilise
iterative techniques like Newton methods and its variations to solve these prob-
lems. We must therefore employ approximation techniques because the zeros of
a nonlinear equation cannot be stated in closed forms. Nowadays, we frequently
employ iterative techniques to obtain a system’s approximate solution. The
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general Newton’s method is frequently used approach. Recent advancements in
the solution system have made it possible for us to reach iterative formulae by
employing Taylor’s polynomial, quadrature formulas, and other methods. One
of the powerful and versatile solution technique for solving nonlinear equations
is Fixed point iterative method [2]. Recently many fixed-point results have been
discussed in different type of non-expansive mappings [3, 4].
Let H be any Hilbert space having convex closed subset of K which is non
empty. Now define a continuous mapping S from convex subset K to convex
subset K. A point a ∈ K known as a fixed point of continuous mapping S if
S(a) = a. Additionally, the F (S) denotes the collection of all fixed points for
S. A fixed point’s existence theorems of single-valued nonexpansive mappings
has been studied by a few authors [5]. A mapping T : B → B defined on space
B if is known as nonexpansive mapping ∥Tµ − Tζ∥≤ ∥µ − ζ∥,∀µ, ζ in space
B. A general map T : B → B defined on space B is called quasi-nonexpansive
mapping provided it has fixed point in space B and if ϑ ∈ B is fixed point of T ,
then ∥Tµ − ϑ∥≤ ∥µ − ϑ∥,∀µ ∈ B. Thus every nonexpansive mapping becomes
quasi-nonexpansive if it has a minimum one fixed point. A mapping T : B → B
described as being generalised nonexpansive if ∀µ, ϑ ∈ B and m,n, o ≥ 0, the
mapping T satisfy
∥Tµ − Tϑ∥≤ m∥µ − ϑ∥+n {∥µ− Tµ∥+∥ϑ− Tϑ∥} + o {∥µ− Tϑ∥+∥ϑ− Tµ∥}
with m+ 2n+ 2o ≤ 1 [6].
Let B be convex subset of X. For µj ∈ B, define a sequence {µ}∞n=1 such that
µn+1 = (1 − βn)µn + βnTµn, where {βn}∞n=1 is a sequence of positive number
βn ∈ [a, b] for all n ∈ N and 0 < a < b < 1. A mapping T : B → B is demiclosed
with respect to ω ∈ X if for each sequence {µn} ⊂ B and each µ ∈ X it follows
from µn ⇀ µ and limT (µn) = ω that µ ∈ B and T (µ) = ω. The set of fixed
point of T is denoted by the abbreviation F (T ) [7].

2 Preliminaries

Firstly we introduce some lemmas and definitions.
Definition 2.1 [7] Any Banach space X is called a Hilbert space if there exit
a scalar product defined on space X such that the norm defined in space X is
same as the norm defined by the relation τ = <τ, τ>1/2.
• Let l2 be the set contains the elements of the form τ = (τ1, τ2, ....) such that

∥τ∥=
∞∑
i=1

|τ2i |1/2< ∞.

• The inner product space (Rn, < ., . >) equipped with the induced norm given
by

∥τ∥=< τ, τ >1/2=

( ∞∑
i=1

|ηi|2
)1/2

such that (η1, η2, ...ηn) ∈ Rn

2
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Definition 2.2 [6] Let H be any Hilbert space, mapping T defined on Hilbert
space H is nonexpansive if

d(Tζ, Tϑ) ≤ d(ζ, ϑ), ∀ζ, ϑ ∈ H

Definition 2.3 [6] Let H be any Hilbert space then the mapping T on Hilbert
space H is quasi nonexpansive if

d(Tµ, ϑ) ≤ d(µ, ϑ),∀µ ∈ H,∀ϑ ∈ F (T )

such that mapping T has at least one fixed point.
Definition 2.4 [7] The Opial’s condition is crucial for understanding the demi-
closed Ness the nonlinear mappings principle as well as the geometry of spaces
and sequence convergence. Any If Space X meets the requirement of the Opial,
a sequence ζn defined on space X converges weakly to any ζ0 ∈ X then

lim
n→∞

inf∥ζn − ζ0∥< lim
n→∞

inf∥ζn − ζ∥,∀ζ ∈ X and ζ ̸= ζ0

Here if we replace the strict inequality < by the inequality ≤ then, we obtain
weak Opial’s condition.
Definition 2.5 [5] Let E ⊆ H where H is a Hilbert space and T : E → H is a
map defined from E to Hilbert space H. Then the mapping T is demiclosed at
any s ∈ H if for any corresponding sequence ζn ∈ E the mapping T follow the
condition as:

ζn → β ∈ E and Tζn → ϑ ⇒ Tβ = ϑ

An Opial’s Condition defined on reflexive Banach space X such that E is a
not empty space X closed convex subset containing a nonexpansive mapping
T : E → X then I − T is demi closed.
Lemma 2.6 [8] Assume a Hilbert space H such that E ∈ H then S : E →
CB(E) is called mapping of Condition (A) if

∥µ− ϑ∥= d(µ, Sϑ), for all µ ∈ H and ϑ ∈ F (s).

Lemma 2.7 [9] Let H be a real Hilbert space and K ∈ H such that a quasi
nonexpansive map from S : H → CB(H) with F (S) nonempty. Then, F (S) is
said to be closed and if S fullfill above Condition (A), then F (S) is said to be
convex. The mapping S is said to hybrid if

3H(Sµ, Sω)2 ≤ ∥µ− ω∥2+d(ω, Sµ)2 + d(µ, Sω)2,∀µ, ω ∈ K

Lemma 2.8 [5] Let H be a Hilbert space such that E ∈ H and S : E → E(E)
is hybrid mapping. Assume ϑn be a sequence in mapping E such that ϑn → ϑ
and lim

n→∞
∥ϑn − yn∥= 0 for sequence yn ∈ Sϑn. Then, ϑ ∈ Sϑ.

3
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3 Quasi Nonexpansive Mapping with Respect
to Hilbert Space

Lemma 3.1 Let X be a normed space with a convex subset C and mapping
T : C → C defined on space C be a quasi-nonexpansive mapping. Suppose that
{ζn}∞n=1 is a sequence such that ζ1 ∈ C. Then, the limit lim

n→∞
∥ζn− ζ∥ exists for

each ζ ∈ F (T ).
Proof: We have given that the mapping T is a quasi-nonexpansive mapping.
Hence, we have

∥ζn+1 − ζ∥= ∥(αnTζn + (1− αn)ζn)− ζ∥
≤ αn∥Tζn − ζ∥+(1− αn)∥ζn − ζ∥= ∥ζn − ζ∥,

For each ζ ∈ F (T ). Hence, the sequence {∥ζn − ζ∥}∞n=1 is a bounded below and
nonincreasing sequence, so from this we conclude that the limit lim

n→∞
∥ζn − ζ∥

exists for each ζ ∈ F (T ).
Lemma 3.2 Let us consider a uniformly convex Hilbert space X, 0 < b < d < 1,
β ≥ 0, tn ∈ [ b, d] and {ζn}∞n=1 and {ϑn}∞n=1 are sequences defined on Hilbert
space X such that

lim sup∥ζn∥≤ β, lim sup∥ϑn∥≤ β, and lim
n→∞

∥tnζn + (1− tn)ϑn∥= β

then the lim
n→∞

∥ζn − ϑn∥= 0.

Lemma 3.3 Let us consider uniformly convex Hilbert space X with a convex
subset C of X and T : C → C be a quasi-nonexpansive mapping. Assume that
µ1 ∈ C and {µn}∞n=1 is a sequence then the limit lim

n→∞
∥µn − Tµn∥= 0.

Proof: Let µ be fixed point of quasi-nonexpansive mapping T . Now, we
know that limit d = lim

n→∞
∥µn − µ∥= 0. is well-defined by Lemma 3.1 and

lim
n→∞

Sup∥Tµn − µ∥≤ d Since, ∥Tµn − µ∥≤ ∥µn − µ∥ for all natural numbers.

Additionally, we know that

lim
n→∞

∥αn(Tµn − µ) + (1− αn)(µn − µ)∥= lim
n→∞

∥µn+1 − µ∥= d

So, from lemma 3.2 we conclude that lim
n→∞

∥Tµn − µn∥= 0.

Theorem 3.4 Let us consider a uniformly convex Hilbert space X satisfying
Opial’s condition and C be a closed subset of Hilbert space X, and mapping
T : C → C be a quasi-non-expansive mapping with I − T demiclosed with
respect to zero. Suppose that ζ1 ∈ C Then the sequence {ζn}∞n=1 converges
weakly to some fixed point of quasi-non-expansive mapping T .
Proof: Let us consider two weakly convergent subsequences {ζ∅n

} and {ζψn
}

of sequence {ζn} which are weakly convergent to some points ζ and ϑ in C,
respectively. Since lim

n→∞
∥ζn − Tζn∥= 0 by Lemma 3.3 and I − T is demiclosed

with respect to zero such that Tζ = ζ and Tϑ = ϑ

4
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Now, put a = lim
n→∞

∥ζn−ϑ∥ by lemma 3.1. Assume that ζ ̸= ϑ and consider the

fact that ζ∅n
⇀ ζ and ζψn

⇀ ϑ then from the Opial’s condition we get

a = lim inf∥ζ∅n
− ζ∥< lim inf∥ζ∅n

− ϑ∥= b,

b = lim inf∥ζψn
− ϑ∥< lim inf∥ζψn

− ζ∥= a,

Which is a contradiction. Hence ζ = ϑ.
This shows that the above sequence {ζn}∞n=1 has exactly one weak cluster point,
from which we conclude that the sequence {ζn}∞n=1 converges weakly to some
τ ∈ C. On Repeating the above concept we conclude that Tτ = τ . Hence, the
sequence {ζn}∞n=1 converges weakly to some fixed point of T .

4 Generalized Quasi-Nonexpansive Mapping un-
der Hilbert Space

A map T : H → H defined on Hilbert space H is said to be generalized quasi
nonexpansive mapping if ∀µ, ϑ ∈ C and m,n, o ≥ 0, mapping T satisfies

∥Tµ− Tϑ∥≤ m∥µ− ϑ∥+n {∥µ− Tµ∥+∥ϑ− Tϑ∥}+ o {∥µ− Tϑ∥+∥ϑ− Tµ∥}

with m+ 2n+ 2o ≤ 1.
Theorem 4.1 Let H be a uniformly convex Hilbert space with a bounded convex
subset C of H. Mapping T be a generalized quasi nonexpansive mapping. Then,
for any small ϵ ≥ 0 there exists a small δ(ϵ) > 0 will be such that for each pair
of points ζ0, ζ1 in C with ∥Tζn − ζ1∥≤ δ(ϵ), and for any point ζ lies on the line
segment joining point ζ0 to point ζ1 with ∥Tζ − ζ∥≤ ϵ.
Proof: We have given that the point ζ lies on the line segment joining point ζ1
to point ζ2. Therefore,

ζ = (1− λ)ζ1 + λζ2, 0 ≤ λ ≤ 1.

Now, define f = b+ c. Suppose ∥ζ1 − ζ2∥≤ ϵ(1− f)/4. Then, for each ζ lies on
the line segment joining the points ζ0 to ζ1,

∥ζ − ζ1∥≤ ϵ(1− f)/4

∥Tζ − ζ∥≤ ∥Tζ − Tζ1∥+∥Tζ1 − ζ1∥+∥ζ1 − ζ∥

therefore, we get

(1− c)∥Tζ − Tζ1∥≤ α∥ζ − ζ1∥+b {∥ζ − Tζ∥+∥ζ1 − Tζ1∥}
+c {∥ζ − Tζ1∥+∥ζ1 − Tζ∥} − c∥Tζ − Tζ1∥

≤ α∥ζ − ζ1∥+b {∥ζ − Tζ∥+∥ζ1 − Tζ1∥}
+c {∥ζ − Tζ1∥+∥ζ1 − Tζ1∥}

≤ (a+ c)∥ζ − ζ1∥+b∥ζ − Tζ∥+(b+ 2c)∥ζ1 − Tζ1∥

5
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hence,

∥Tζ − ζ∥≤ ∥Tζ − Tζ1∥+∥Tζ1 − ζ1∥+∥ζ1 − ζ∥

≤
(
1 +

a+ c

1− c

)
∥ζ − ζ1∥+

b

1− c
∥ζ − Tζ∥

+

(
1 +

b+ 2c

1− c

)
∥ζ1 − Tζ1∥

and

∥Tζ − ζ∥≤ 1 + a

1− b− c
∥ζ − ζ1∥+

1 + b+ c

1− b− c
∥ζ2 − Tζ1∥≤

ϵ

2
+

2

1− f
δ(ϵ) ≤ ϵ

if δ(ϵ) < (1− f)ϵ/4.
Therefore, we consider only that couple of points ζ1, ζ2 which satisfying the
condition ∥ζ1 − ζ2∥≥ (1− f)ϵ/4.
Let d0 = diam(C). Then, for λ < ϵ 1−f4d0

, ∥ζ − ζ1∥= λ∥ζ2 − ζ1∥< ϵ(1− f)/4 and

by the argument, ∥Tζ − ζ∥< ϵ. Hence, we must consider only λ ≥ ϵ(1−f)
4d0

. If
1 − λ < ϵ(1 − f)/4d0, then ∥ζ − ζ2∥= (1 − λ)∥ζ2 − ζ1∥< (1 − f)/4d0. And,
applying the same argument with ζ2 replacing ζ1, again we get ∥Tζ − ζ∥< ϵ.
Therefor we get

λ ∈
[
ϵ(1− f)

4d0

]
.

set y = Tζ. Then

∥y − ζ1∥≤ ∥Tζ − Tζ2∥+∥Tζ1 − ζ1∥

and

∥Tζ − Tζ1∥≤ α∥ζ − ζ1∥+b[∥ζ − ζ1∥+∥ζ1 − Tζ∥+∥ζ1 − Tζ1∥]
+c[∥ζ − ζ1∥+∥ζ1 − Tζ1∥+∥ζ1 − Tζ∥].

thus,

(1− b− c)∥Tζ − ζ1∥≤ (a+ b+ c)∥ζ − ζ1∥+(1 + b+ c)∥ζ1 − Tζ1∥,

and

∥Tζ − ζ1∥≤ ∥ζ − ζ1∥+2(1− f)−1∥ζ1 − Tζ2∥≤ λ∥ζ1 − ζ2∥+2δ(ϵ)/(1− f).

similarly,

∥Tζ − ζ2∥≤ (1− λ)∥ζ1 − ζ2∥+2δ(ϵ)/(1− f)

set

z0 = λ−1∥ζ1 − ζ2∥−1(y − ζ1),

z1 = (1− λ)−1∥ζ1 − ζ2∥−1(ζ2 − y).

6
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then

∥z0∥≤ 1 +
64d0δ(ϵ)

ϵ2(1− f)3
.

similarly

∥z1∥≤ 1 +
64d0δ(ϵ)

ϵ2(1− f)3
.

but we know that

∥λz0 + (1− λ)z1∥= 1.

and H is a Uniformly convex Hilbert space. Hence, if we choose positive δ(ϵ) as
small as possible then, we have ∥z0 − z1∥< ϵ/d0. Thus,

∥y − ζ∥= ∥((1− λ)(y − ζ1)− λ(ζ − y) = λ(1− λ)∥ζ1 − ζ2∥∥z0 − z1∥< ϵ)∥.

Hence, for any small ϵ > 0 there exists a small δ(ϵ) > 0 such that for each pair
of points ζ0, ζ1 in C with ∥Tζn − ζ1∥≤ δ(ϵ), and for any point ζ lies on the line
segment joining point ζ1 to point ζ2 with ∥Tζ − ζ∥≤ ϵ.

5 Weak Convergence of Quasi-Nonexpansive Map-
ping with Respect to Hilbert Space by Mann’s
Type

In 1953, Mann[11] created the standard Mann’s iteration technique. Since
Mann’s iterative approach for creating fixed points for nonexpansive mapping
has been thoroughly studied by other authors. The typical Mann’s iterative
procedure produces the sequence {ϑn} as follows:

ϑ1 = ϑ ∈ K

ϑn+1 = (1− ζn)ϑn + ζnTϑn, ∀ n ≥ 1

Where < ζn > is a sequence lies in 0 to 1. Mann’s Type weak convergence
theorem for quasi-nonexpansive mapping.
For quasi-nonexpansive mapping in Hilbert space, we provide a weak conver-
gence theorem of mann’s kind [11] in this section. Before demonstrating this,
we address several common findings, such as:
Lemma 5.1 Let T be quasi-nonexpansive map defined from closed convex sub-
set C of Hilbert space H to C. Then, I − T is demiclosed.
Proof: We have given that T : C → C be a quasi nonexpansive mapping
defined on Hilbert space H. Then, for any real γ, δ ∈ R we have

γ∥Tζ − Tϑ∥2+(1− γ)∥ζ − Tϑ∥2≤ δ∥Tζ − ϑ∥2+(1− δ)∥ζ − ϑ∥2 (5.1)

7
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for all ζ, ϑ ∈ C.
Now, suppose ζn ⇀ r and ϑn ⇀ Tζn → 0. Let us consider

γ∥Tζn − Tr∥2+(1− γ)∥ζn − Tr∥2≤ δ∥Tζn − r∥2+(1− δ)∥ζn − r∥2 (5.2)

from these inequalities, we have

γ∥Tζn − ζn + ζn − Tr∥2+(1− γ)∥ζn − Tr∥2≤ δ∥Tζn − ζn + ζn − r∥2+(1− δ)∥ζn − r∥2

and hence

γ(∥Tζn − ζn∥2+∥ζn − Tr∥2+2⟨Tζn − ζn, ζn − Tr⟩) + (1− γ)∥ζn − Tr∥2

≤ δ(∥Tζn − ζn∥2+∥ζn − r∥2+2⟨Tζn − ζn, ζn − Tr⟩) + (1− δ)∥ζn − r∥2

now, we apply a Hilbert limit µ on both the sides of the above inequality, then
we have

γµn(∥Tζn − ζn∥2+∥ζn − Tr∥2+2⟨Tζn − ζn, ζn − Tr⟩) + (1− γ)µn∥ζn − Tr∥2

≤ δµn(∥Tζn − ζn∥2+∥ζn − r∥2+2⟨Tζn − ζn, ζn − Tr⟩) + (1− δ)µn∥ζn − r∥2

and hence

γµn∥ζn − Tr∥2+(1− γ)µn∥ζn − Tr∥2≤ δµn∥ζn − r∥2+(1− δ)µn∥ζn − r∥2

so, we have

µn∥ζn − Tr∥2≤ µn∥ζn − r∥2

since,

µn∥ζn − r∥2+µn∥ζn − r + r − Tr∥2≤ µn∥ζn − r∥2

therefore, finally we get

µn∥ζn − r∥2+µn∥r − Tr∥2+2µn⟨ζn − r, r − Tr⟩ ≤ µn∥ζn − r∥2

so, we from all these we get µn∥r− Tr∥2≤ 0 and ∥r− Tr∥2≤ 0. Which implies,
Tr = r. Therefore, I − T is demiclosed.

Theorem 5.2 Let T be quasi-nonexpansive map defined from closed convex
subset C of Hilbert space H to C with at least one fixed point i.e. F (T ) =
{ρ ∈ C : Tρ = ρ} and F (T ) ̸= ∅. Let G be a metric protection of Hilbert space
H onto F (T ) and {xn} be a real number sequence lies between 0 and 1 such
that lim

n→∞
inf xn(1− xn) > 0. Let ⟨xn⟩ generates a sequence ⟨ρn⟩ such that

ρn+1 = xnρn + (1− xn)Tρn, n = 1, 2, 3. . . .., ρ1 = ρ ∈ C

then the sequence ⟨ρn⟩ converges weakly to a member ϑ of F (T ) such that
ϑ = lim

n→∞
Gρn.

8
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Proof: : Let ζ ∈ F (T ) and T be a quasi-nonexpansive mapping defined on
Hilbert space H. Then, we have

∥ρn+1 − ζ∥2= ∥xρn + (1− xn)Tρn − ζ∥2≤ xn∥ρn − ζ∥2+(1− xn)∥Tρn − ζ∥2

≤ xn∥ρn − ζ∥2+(1− xn)∥ρn − ζ∥2= ∥ρn − ζ∥2

For all natural numbers. Hence, the limit lim
n→∞

∥ρn − ζ∥2 exists. So, we can say

that the sequence {ρn} is bounded.
we also have

∥ρn+1 − ζ∥2= ∥xnρn + (1− xn)Tρn − ζ∥2

= xn∥ρn − ζ∥2+(1− xn)∥Tρn − ζ∥2−xn(1− xn)∥Tρn − ρn∥2

≤ xn∥ρn − ζ∥2+(1− xn)∥ρn − ζ∥2−xn(1− xn)∥Tρn − ρn∥2

= ∥ρn − ζ∥2−xn(1− xn)∥Tρn − ρn∥2

so, we have

xn(1− xn)∥Tρn − ρn∥2≤ ∥ρn − ζ∥2−∥ρn+1 − ζ∥2

since the limit lim
n→∞

∥ρn − ζ∥2 exists and lim inf
n→∞

xn(1 − xn) > 0, we have

∥Tρn − ρn∥2→ 0. The above defined sequence {ρn} is bounded. Hence, there
exists a subsequence {ρni

} of sequence {ρn} such that ρni
→ v. By lemma 5.1,

we obtained a fixed point ϑ ∈ F (T ). Similarly, let us assume that {ρni
} and{

ρnj

}
are the two sub sequences of sequence {ρn} such that ρni → ϑ1andρnj →

ϑ2. Now, for proving the given theorem we must show that ϑ1 = ϑ2. we know
ϑ1, ϑ2 ∈ F (T ) and hence, the limits lim

n→∞
∥ρn − ϑ1∥2 and lim

n→∞
∥ρn − ϑ2∥2 are

exist.
now, Put

α = lim
n→∞

(∥ρn − ϑ1∥2−∥ρn − ϑ2∥2), for all positive integers.

∥ρn − ϑ1∥2−∥ρn − ϑ2∥2= 2⟨ρn, ϑ2 − ϑ1⟩+ ∥ϑ1∥2−∥ϑ2∥2

such that ρni ⇀ ϑ1 and ρnj ⇀ ϑ2 then, we get

α = 2⟨ϑ2, ϑ2 − ϑ1⟩+ ∥ϑ1∥2−∥ϑ2∥2 (5.3)

and

α = 2⟨ϑ2, ϑ2 − ϑ1⟩+ ∥ϑ1∥2−∥ϑ2∥2 (5.4)

Now, by combining these two equations, we obtain 0 = 2⟨ϑ2 −ϑ1, ϑ2 −ϑ1⟩ and
hence ∥ϑ2 − ϑ1∥2= 0. So, we get ϑ2 = ϑ1. This implies that the sequence {ρn}
converges weakly to an fixed point ϑ of F (T ).

9
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Since ∥ρn+1 − ζ∥2≤ ∥ρn − ζ∥ for all ζ ∈ F (T ) and n ∈ N and we already see
that the sequence {Gxn} firmly converges to a fixed point g of F (T ). From the
property of g we have

⟨xn −Gxn, Gxn − y⟩ ≥ 0

for all fixed points y ∈ F (T ) and n ∈ N . Since the sequence ρn converges to ϑ
and the sequence Gxn converges to g. So, we can say that

⟨ϑ− g, g − y⟩ ≥ 0

for all y ∈ F (T ). Putting y = ϑ, we get g = ϑ. This means ϑ = lim
n→∞

Gρn.

Therefore, the sequence ⟨ρn⟩ converges weakly to a member ϑ of F (T ) such that
ϑ = lim

n→∞
Gρn.

Conclusion

This article’s objective is to give a common approach for talking about the fixed
point of generalized quasi-nonexpansive mapping and quasi-nonexpansive map-
ping with respect to Hilbert space. The research piece concludes by presenting
a novel approach to examining the fixed-point theorems for quasi-nonexpansive
mapping and its generalized form about Hilbert space.
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Abstract

This study aims to assess the generalized matrix transform (M-transform)
of various incomplete types of special functions named generalized incom-
plete hypergeometric functions, incomplete H-functions, incomplete H-
functions, incomplete I-functions, all of which possess a matrix argument.
The matrix argument in this case is a real symmetric positive definite
matrix of size k × k having k(k+1)

2
variables. Here, we establish the spe-

cial functions with a matrix argument by extending the existing special
functions with a scalar argument. Both scalar and matrix arguments are
significant in statistical distribution problems, particularly in scenarios
where the null hypothesis is not assumed to be true. Additionally, we
derived specific cases by extending the univariate cases.

Keywords: Generalized Incomplete Hypergeometric functions, Incomplete H-
functions, Incomplete H-functions, Incomplete I-functions, M-transform.

1 Introduction

Special functions with a matrix argument have demonstrated their significance
since 1950 when Bochner [24] resolved a Lattice point problem utilizing the

1
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Bessel function of matrix argument. Furthermore, Herz [11] established the
hypergeometric function of matrix argument in terms of the hypergeometric
function by utilizing the Laplace transform, which is an extension of the uni-
variate Laplace transform presented in (Eq. 16, P. 219, [1]). This univariate
Laplace transform and its inverse formula aid in defining the hypergeometric
function pFq for all p and q. However, the explicit expression of the hypergeo-
metric function pFq with a matrix argument remains undefined.
In 1955, Herz [11] derived the hypergeometric function with matrix argument by
using the Laplace transform and inductive method starting from 0F0(A) = etr(A)

and defined it by:

p+1Fq
(
a1, . . . , ap, y; b1, . . . , bq;−z−1

)
|z|−y

=
1

Γk(y)

∫
Λ>0

e−tr(Λz)pFq (a1, . . . , ap; b1, . . . , bq;−Λ) |Λ|y−φdΛ, (1)

where, R(z) > 0, φ = k+1
2 , y = φ− 1 and

pFq+1 (a1, . . . , ap, b1, . . . , bq, y;−Λ) |Λ|y−φ = Γk(y)
1

(2πi)
k(k+1)/2

×∫
R(z)=X0>0

etr(Λz)pFq
(
a1, . . . , ap; b1, . . . , bq;−z−1

)
|z|−ydz, R(Λ) > 0. (2)

Further, Mathai [6, 8, 9] introduced the generalized matrix transform (M-
transform) defined an integral over the k×k positive symmetric definite matrix
A as follows:

M(f) =

∫
A>0

|A|s−
k+1
2 f(A)dA. (3)

This integral exists for R(s) > k+1
2 − 1, where R(.) is the real part of (.).

For f(A) = e−trA the M-transform will be M(f) = Γk(s) (real matrix-variate
gamma function).
Real matrix-variate gamma function Γk(s) is defined as follows:

Γk(s) = πk(k−1)/4Γ(s)Γ(s− 1

2
)Γ(s− 1) . . .Γ(s− k − 1

2
), R(s) >

k − 1

2
. (4)

The M-transform of the hypergeometric function of k×k real symmetric positive
definite matrix argument by the integral∫

Z>0

|Z|s−
k+1
2 pFq (a1, . . . , ap; b1, . . . , bq;−Z) dZ

=

∏q
j=1 Γk(bj)

∏p
j=1 Γk(aj − s)∏p

j=1 Γk(aj)
∏q
j=1 Γk(bj − s)

Γk(s), (5)

provided the left-hand side integral exists and it is equal to the gamma products
on the right-hand side.

2
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Application of hypergeometric functions of matrix argument in the field of sta-
tistical distributions developed by Mathai [10].
Progressively, Mathai [7] figure out the Fox’s H-function H(Z) of k × k real
symmetric positive definite matrix argument z satisfies the integral equation:∫

Z>0

|Z|s−
k+1
2 H(Z)dZ

=

∏m
j=1 Γk(bj +Bjs)

∏n
j=1 Γk(k+1

2 − aj −Ajs)∏q
j=m+1 Γk(k+1

2 − bj −Bjs)
∏p
j=n+1 Γk(aj +Ajs)

, (6)

whenever the left-hand side integral exists, it is equal to the gamma products
on the right side and for more conditions (see [7]). Result (6) can transform to
two known results:

1. By putting k = 1, matrix argument converts to scalar argument and

2. By putting Aj (j = 1, . . . , p) = Bj (j = 1, . . . , q) = 1, Fox’s H-function of
matrix argument convert to Meijer’s G-function of matrix argument detail
literature available in [5].

Special functions with a matrix argument are employed to address fading issues
in wireless communication. Several authors have explored the applications of
special functions with scalar and matrix argument, including [3, 20, 16, 17, 28,
21, 26, 22, 29, 27].

2 Some Definitions and Preliminary Results

In this section, we discuss a few more elementary definitions and preliminary
results which we use to derive main theorems.

2.1 Incomplete Gamma Functions

The incomplete gamma functions γ(s, x) and Γ(s, x) for x = 1 was introduced
by Prym [13] in 1877. Systematically, the incomplete gamma functions γ(s, x)
and Γ(s, x) defined by

γ(s, y) =

∫ y

0

ts−1e−tdt, (R(s) > 0; y ≥ 0), (7)

and

Γ(s, y) =

∫ ∞
y

ts−1e−tdt, (y ≥ 0; R(s) > 0 when y = 0), (8)

respectively. The incomplete gamma functions holds the decomposition formula
γ(s, y) + Γ(s, y) = Γ(s), here Γ(.) is the well known gamma function given by
Γ(s) =

∫∞
0
ts−1e−tdt, R(s) > 0.

3
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2.2 Incomplete Pochhammer Symbols

In terms of incomplete gamma functions γ(s, y) and Γ(s, y) defined in (7) and
(8) Srivastava et al. [14] introduced incomplete Pochhammer symbols (ν;x)λ
and [ν;x]λ as follows:

(ν;x)λ =
γ(ν + λ, s)

Γ(ν)
and [ν;x]λ =

Γ(ν + λ, s)

Γ(ν)
, (9)

here ν, λ ∈ C, x ≥ 0. These incomplete Pochhammer symbols (ν;x)λ and [ν;x]λ
given in (9) holds the decomposition formula as:

(ν;x)λ + [ν;x]λ = (ν)λ (ν, λ ∈ C, x ≥ 0) ,

where well known Pochhammer symbol (ν)λ = Γ(ν+λ)
Γ(λ) , ν ∈ C\Z−0 .

2.3 Generalized Incomplete Hypergeometric Functions

The incomplete Pochhammer symbols are the backbone of the incomplete form
of special functions defined in this section. For (|arg(−z)| < π), Srivastava et
al. [14] introduced generalized incomplete hypergeometric functions along with
Mellin-Barnes integral in terms of incomplete Pochhammer symbols as follows:

pγq

[
(α1, x), α2, . . . , αp;
δ1, . . . , δq;

z

]
=
∞∑
n=0

(α1;x)n(α2)n, . . . , (αp)n
(δ1)n, . . . , (δq)n

zn

n!

=
1

2πi

Γ(δ1) . . .Γ(δq)

Γ(α1) . . .Γ(αp)

∫
L

γ(α1 + s, x)Γ(α2 + s) . . .Γ(αp + s)

Γ(δ1 + s) . . .Γ(δq + s)
Γ(−s)(−z)sds,

(10)

and

pΓq

[
(α1, x), α2, . . . , αp;
δ1, . . . , δq;

z

]
=
∞∑
n=0

[α1;x]n(α2)n, . . . , (αp)n
(δ1)n, . . . , (δq)n

zn

n!

=
1

2πi

Γ(δ1) . . .Γ(δq)

Γ(α1) . . .Γ(αp)

∫
L

Γ(α1 + s, x)Γ(α2 + s) . . .Γ(αp + s)

Γ(δ1 + s) . . .Γ(δq + s)
Γ(−s)(−z)sds.

(11)

Let L = L(σ;∓i∞) be a MellinBarnes-type contour from σ−i∞ to σ+i∞ (σ ∈ R)
with the usual indentations to separate one set of poles from the other set of
poles of the integrand.
Further, we have the following decomposition formula in terms of the well-known
generalized hypergeometric function pFq (p, q ∈ N) as follows:

pγq

[
(α1, x), α2, . . . , αp;
δ1, . . . , δq;

z

]
+ pΓq

[
(α1, x), α2, . . . , αp;
δ1, . . . , δq;

z

]
= pFq

[
α1, . . . , αp;
δ1, . . . , δq;

z

]
.
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2.4 Incomplete H-Functions

The incomplete H-functions introduced by Srivastava et al. [15] in terms of
incomplete gamma functions γ(s, y) and Γ(s, y) as follows:

γM,N
P,Q (z) = γM,N

P,Q

[
z

∣∣∣∣ (f1,F1, t), (fj ,Fj)2,P

(wj ,Wj)1,Q

]
:=

1

2πi

∫
L

ϕ(s, t)z−sds, (12)

where

ϕ(s, t) =
γ(1− f1 − F1s, t)

∏M
j=1 Γ(wj + Wjs)

∏N
j=2 Γ(1− fj − Fjs)∏Q

j=M+1 Γ(1−wj −Wjs)
∏P
j=N+1 Γ(fj + Fjs)

, (13)

and

ΓM,N
P,Q (z) = ΓM,N

P,Q

[
z

∣∣∣∣ (f1,F1, t), (fj ,Fj)2,P

(wj ,Wj)1,Q

]
:=

1

2πi

∫
L

φ(s, t)z−sds, (14)

where

φ(s, t) =
Γ(1− f1 − F1s, t)

∏M
j=1 Γ(wj + Wjs)

∏N
j=2 Γ(1− fj − Fjs)∏Q

j=M+1 Γ(1−wj −Wjs)
∏P
j=N+1 Γ(fj + Fjs)

. (15)

The incomplete H-functions γM,N
P,Q (z) and ΓM,N

P,Q (z) are exist for all t ≥ 0 and
for more existing conditions (see [12], [15]).

2.5 Incomplete H-Functions

The incomplete H-functions γM,N
P,Q (z) and Γ

M,N

P,Q (z) introduced by Srivastava et
al. [15] in terms of incomplete gamma functions γ(s, y) and Γ(s, y) as follows:

γM,N
P,Q

[
z

∣∣∣∣ (f1,F1;β1 : t), (fj ,Fj ;βj)2,N , (fj ,Fj)N+1,P

(wj ,Wj)1,M , (wj ,Wj ;αj)M+1,Q

]
:=

1

2πi

∫
L

ϕ(s, t)z−sds, (16)

where

ϕ(s, t) =
[γ(1− f1 − F1s, t)]

β1
∏M
j=1 Γ(wj + Wjs)

∏N
j=2[Γ(1− fj − Fjs)]

βj∏Q
j=M+1[Γ(1−wj −Wjs)]αj

∏P
j=N+1 Γ(fj + Fjs)

,

(17)
and

Γ
M,N

P,Q

[
z

∣∣∣∣ (f1,F1;β1 : t), (fj ,Fj ;βj)2,N , (fj ,Fj)N+1,P

(wj ,Wj)1,M , (wj ,Wj ;αj)M+1,Q

]
:=

1

2πi

∫
L

φ(s, t)z−sds, (18)

5
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where

φ(s, t) =
[Γ(1− f1 − F1s, t)]

β1
∏M
j=1 Γ(wj + Wjs)

∏N
j=2[Γ(1− fj − Fjs)]

βj∏Q
j=M+1[Γ(1−wj −Wjs)]αj

∏P
j=N+1 Γ(fj + Fjs)

.

(19)

The incomplete H-functions γM,N
P,Q (z) and Γ

M,N

P,Q (z) for conditions (see [15]) are
exist for all t ≥ 0 and for more existing conditions (see, [15]).

2.6 Incomplete I-Functions

The incomplete I-functions (γ)IM,N
Pi.Qi,R

(z) and (Γ)IM,N
Pi.Qi,R

(z) introduced by Bansal
et al. [18] in terms of incomplete gamma functions γ(s, y) and Γ(s, y) as follows:

(γ)IM,N
Pi.Qi,R

[
z

∣∣∣∣ (f1,F1, t), (fj ,Fj)2,N , (fji,Fji)N+1,Pi

(wj ,Wj)1,M , (wji,Wji)M+1,Qi

]
:=

1

2πi

∫
L

ϕ(s, t)z−sds, (20)

where

ϕ(s, t) =
γ(1− f1 − F1s, t)

∏M
j=1 Γ(wj + Wjs)

∏N
j=2 Γ(1− fj − Fjs)∑R

i=1

[∏Qi

j=M+1 Γ(1−wji −Wjis)
∏Pi

j=N+1 Γ(fji + Fjis)
] , (21)

and

(Γ)IM,N
Pi.Qi,R

[
z

∣∣∣∣ (f1,F1, t), (fj ,Fj)2,N , (fji,Fji)N+1,Pi

(wj ,Wj)1,M , (wji,Wji)M+1,Qi

]
:=

1

2πi

∫
L

φ(s, t)z−sds, (22)

where

φ(s, t) =
Γ(1− f1 − F1s, t)

∏M
j=1 Γ(wj + Wjs)

∏N
j=2 Γ(1− fj − Fjs)∑R

i=1

[∏Qi

j=M+1 Γ(1−wji −Wjis)
∏Pi

j=N+1 Γ(fji + Fjis)
] . (23)

The incomplete I-functions (γ)IM,N
Pi,Qi,R

(z) and (Γ)IM,N
Pi,Qi,R

(z) exists for all t ≥ 0
and for existing conditions (see, [18, 21, 23]). We can easily define the decom-
position formula of incomplete form of special functions.

2.7 Jacobians of Matrix Transformations

This section will present a few outcomes on the Jacobians of transformations
that we require. For now, we will focus on the prerequisites for formulating the
special functions with matrix argument. We define a real symmetric positive
definite matrix X as X = X ′ > 0 (where X ′ is the transpose of matrix X).

6
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We use the notations X ≥ 0 to represent a positive semi-definite matrix, X < 0
for a negative definite matrix, X ≤ 0 for a negative semi-definite matrix,
and indefinite matrices for all other matrices. The notations

∫
X>0

f(X)dX

and
∫ I
X=0

g(X)dX represent the integration of f(X) over all positive matrices
X = X ′ > 0 and the integration of g(X) over all matrices I −X > 0 that are
positive definite. The symbol dX represents the differential element.
Let us now discuss some elementary results regarding the Jacobians of transfor-

mations. Let L be a symmetric matrix of order k. Then L involves k(k+1)
2 vari-

ables, and its differential element is defined as dL = dl11 . . . dl1k; dl22 . . . dl2k . . .
dlk−1k; dlkk. In the case of an asymmetric (non-symmetric) matrix L = [l] ij
of order k, L involves k2 variables, and its differential element dL is defined
as dl11 . . . dl1k; dl21 . . . dl2k . . . dlk1 . . . dlkk. Transformation of L = [l]ij to M =

[m]ij here both are symmetric matrix of order k. Which implies that k(k+1)
2

variables of L transform to k(k+1)
2 variables of M . Here, we have a few results

given in the previous literature.

1. If A and B are k × k symmetric and X is a k × k non singular then

A = XBX ′ =⇒ dA = |X|k+1dB, (24)

where |X| and X ′ represent the determinant and transpose of X.

2. If L = [l]ij is k × k symmetric and M = [m]ij is k × k lower triangular
matrices respectively then

L = MM ′ =⇒ dL =

[
2k

k∏
i=1

mk+1−i
ii

]
dM. (25)

Convolution Property: If M-transform of two symmetric functions f1(A)
and f2(A) are G1(s) and G2(s) respectively, then M.transform of a function
f3(A) =

∫
Λ>0
|Λ|af1(AΛ)f2(Λ)dΛ is defiend by

M(f3) = G1(s)G2

(
k + 1

2
+ a− s

)
. (26)

From the (3) we observe that M(f) is a function of s (univariate), although
f(Λ) is a multivariate we need not have uniqueness for f(Λ).
Real matrix-variate Beta function Bk(s1, s2) define as follows:

Bk(s1, s2) =
Γk(s1)Γk(s2)

Γk(s1 + s2)
, R(s1) >

k − 1

2
, R(s2) >

k − 1

2
.

The integral representation of the Real Matrix-variate Beta function is defined
as follows:

Bk(s1, s2) =

∫
X

|X|s1−
k+1
2 |I −X|s2−

k+1
2 dX, (27)

7
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here, X > 0, 0 < X < I =⇒ I−X > 0 and R(s1) > k−1
2 , R(s2) > k−1

2 . Eigen
values of X i.e. λ1, λ2, . . . , λk are in the interval of (0, 1).
We can extend more univariate integrals to matrix cases by using convolution
property (26) as follows:

1. Taking a = α − k+1
2 , f1(A) = e−trA and f2(A) = |I − A|β− k+1

2 in (26),
we get∫ I

0

|A|α−
k+1
2 |I −A|β−

k+1
2 e−trΛAdA

=
Γk(α)Γk(β)

Γk(α+ β)
1F1(α;α+ β;−Λ), R(α), R(β) >

k + 1

2
− 1. (28)

2. Putting a = α− k+1
2 , f1(A) = |I − A|−β and f2(A) = |I − A|γ−α− k+1

2 in
(26), we get∫ I

0

|I − ΛA|−β |Λ|α−
k+1
2 |I − Λ|γ−α−

k+1
2 dΛ =

Γk(α)Γk(γ − α)

Γk(γ)
×

2F1(α, β; γ;A), R(β) > 0, R(α), R(γ − α) >
k + 1

2
− 1. (29)

3. Another extension of univariate integral to matrix case as follows:∫
Λ>0

|Λ|α−
k+1
2 |I +AΛ|−µdΛ

=
Γk(α)Γk(µ− α)

Γk(µ)
|A|−α, A > 0, R(α), R(µ− α) >

k + 1

2
− 1. (30)

Here, we substitute V = A1/2ΛA1/2. Then dV = |A| k+1
2 dΛ in (30).

4. Further, set U−1 = I+V i.e. dV = |U |−(k+1)dU and 0 < U < I then LHS

of (30) can be written as |A|−α
∫
V >0
|V |α− k+1

2 |I +V |−µdV and reduces to
beta integral defined in (27) and on transforming CV = A in (29), we get
a new univariate integral as follows:∫ C

0

|I + ZA|−µ|A|α−
k+1
2 dA =

Γk(α)Γk(k+1
2 )

Γk(α+ k+1
2 )
|C|α×

2F1(α, µ;α+
k + 1

2
;−ZC), C > 0, R(α) >

k + 1

2
− 1. (31)

5. In (31), making the transformations V = I + Λ, U = V −1 and then use

2F1(α, β; γ;A) = |(I −A)|−β2F1(γ − α, β; γ;−A(I −A)−1). We have∫
Λ>0

|Λ|α−
k+1
2 |I + Λ|µ|I + ZΛ|νdΛ =

Γk(α)Γk(ν + µ− α)

Γk(−ν − µ)
×

2F1(−ν, α;−ν − µ; I − Z), −R(ν + µ) > R(α) >
k + 1

2
− 1. (32)
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6. Making the transformation V = A−1/2ΛA−1/2 in (28). We get

∫ Z

0

|Λ|α−
k+1
2 e−trCΛdΛ = |Z|α

Γk(α)Γk(k+1
2 )

Γk(α+ k+1
2 )
×

1F1(α;α+
k + 1

2
;−ZC), R(α) >

k + 1

2
− 1. (33)

It is important to note that the incomplete gamma function can be gen-
eralized using C = I in (33). The incomplete gamma functions for univariate
matrix cases can be written as:

γk(α,Z) =

∫ Z

Λ=0

|Λ|α−
k+1
2 e−trΛdΛ,

and Γk(α,Z) =

∫
Λ>Z

|Λ|α−
k+1
2 e−trΛdΛ = Γk(α)− γk(α,Z).

(34)

For multivariate cases
∫

Λ>Z
|Λ|α− k+1

2 e−trΛdΛ 6= Γk(α)−γk(α,Z) since
∫ B
A

+
∫ C
B
6=∫ C

A
is not valid for all values of Z when Z is a matrix.

There are three approaches to deriving special functions of matrix argument:

1. Bochner [24] and Herz’s [11] using Laplace approach,

2. James [2, 3] and Constantine’s [4] develop zonal polynomial approach and

3. Mathai’s [19, 7] generalized matrix transform (M-transform) method.

In this work, we use the M-transform method to derive the special functions of
the matrix argument.

3 Main Results

In this section, we evaluate some results using the M-transform of various incom-
plete types of special functions like generalized incomplete hypergeometric func-
tions, incomplete H-functions, incomplete H-functions, incomplete I-functions.
Theorem 1: Let Z be a k×k real symmetric positive definite matrix with eigen-
values λ1 > λ2 > · · · > λk > 0 and generalized incomplete hypergeometric func-
tions pγq(Z) and pΓq(Z) are symmetric functions in the sense pγq(Z) = pγq(lZl

′)
and pΓq(Z) = pΓq(lZl

′), ll′ = I for all orthogonal matrices. If s is an arbitrary
parameter then consider the integral equations:∫

Z>0

|Z|s−
k+1
2 pγq

[
(α1, A), α2, . . . , αp;
δ1, . . . , δq;

−Z
]
dZ

=

∏q
j=1 Γk(δj)∏p
i=1 Γk(αi)

γk(α1 − s,A)
∏p
i=2 Γk(αi − s)∏q

j=1 Γk(δj − s)
Γk(s), (35)

9
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and∫
Z>0

|Z|s−
k+1
2 pΓq

[
(α1, A), α2, . . . , αp;
δ1, . . . , δq;

−Z
]
dZ

=

∏q
j=1 Γk(δj)∏p
i=1 Γk(αi)

Γk(α1 − s,A)
∏p
i=2 Γk(αi − s)∏q

j=1 Γk(δj − s)
Γk(s), (36)

provided these gamma products are defined.

Proof: Here Z is a k×k real symmetric positive definite matrix with eigenvalues
λ1 > λ2 > · · · > λk > 0 and generalized incomplete hypergeometric functions

pγq(Z) and pΓq(Z) are symmetric functions in the sense that pγq(Z) = pγq(lZl
′)

and pΓq(Z) = pΓq(lZl
′), ll′ = I for all orthogonal matrices. In this case, we

have f(ZΛ) = f(ΛZ) = f(Λ1/2ZΛ1/2) whenever Λ1/2 is defined.
For the positive semi definite matrix Z there exists a lower triangular matrix
T such that Z = TT ′. Now transforming Z to T by using (25) as dZ =[
2k
∏k
i=1 t

k+1−i
ii

]
dT and |TT ′| =

∏k
i=1 t

2
ii. After substituting these values in

the left-hand of (35) and (36), use (34) and after a bit of simplification, we get
the desired result.

Theorem 2: This generalized incomplete hypergeometric functions with matrix
argument hold the decomposition formula as follows:∫

Z>0

|Z|s−
k+1
2 pγq

[
(α1, A), α2, . . . , αp;
δ1, . . . , δq;

−Z
]
dZ

+

∫
Z>0

|Z|s−
k+1
2 pΓq

[
(α1, A), α2, . . . , αp;
δ1, . . . , δq;

−Z
]
dZ

=

∫
Z>0

|Z|s−
k+1
2 pFq

[
α1, . . . , αp;
δ1, . . . , δq;

−Z
]
dZ. (37)

Proof: We can write left hand side of (37) by using (35) and (36) as follows:∏q
j=1 Γk(δj)∏p
i=1 Γk(αi)

γk(α1 − s,A)
∏p
i=2 Γk(αi − s)∏q

j=1 Γk(δj − s)
Γk(s)

+

∏q
j=1 Γk(δj)∏p
i=1 Γk(αi)

Γk(α1 − s,A)
∏p
i=2 Γk(αi − s)∏q

j=1 Γk(δj − s)
Γk(s)

=

∏q
j=1 Γk(δj)∏p
i=1 Γk(αi)

∏p
i=1 Γk(αi − s)∏q
j=1 Γk(δj − s)

Γk(s). (38)

The right-hand side of (38) is the same as derived by Mathai (eq. 3.3, [6]).

Theorem 3: Let Z be a k × k real symmetric positive definite matrix with
eigenvalues λ1 > λ2 > · · · > λk > 0 and the incomplete H-functions γM,N

P,Q (Z)

10
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and ΓM,N
P,Q (Z) be a symmetric functions in the sense γM,N

P,Q (Z) = γM,N
P,Q (lZl′) and

ΓM,N
P,Q (Z) = ΓM,N

P,Q (lZl′), ll′ = I for all orthogonal matrices. If s is an arbitrary
parameter then consider the integral equations for incomplete H-functions as
follows:∫

Z>0

|Z|s−
k+1
2 γM,N

P,Q

[
Z

∣∣∣∣ (f1,F1, A), (fj ,Fj)2,P

(wj ,Wj)1,Q

]
dZ

=
γk(k+1

2 − f1 − F1s,A)
∏M
j=1 Γk(wj + Wjs)

∏N
j=2 Γk(k+1

2 − fj − Fjs)∏Q
j=M+1 Γk(k+1

2 −wj −Wjs)
∏P
j=N+1 Γk(fj + Fjs)

, (39)

and∫
Z>0

|Z|s−
k+1
2 ΓM,N

P,Q

[
Z

∣∣∣∣ (f1,F1, A), (fj ,Fj)2,P

(wj ,Wj)1,Q

]
dZ

=
Γk(k+1

2 − f1 − F1s,A)
∏M
j=1 Γk(wj + Wjs)

∏N
j=2 Γk(k+1

2 − fj − Fjs)∏Q
j=M+1 Γk(k+1

2 −wj −Wjs)
∏P
j=N+1 Γk(fj + Fjs)

. (40)

provided these gamma products are defined.

Proof: Here Z is a k×k real symmetric positive definite matrix with eigenvalues
λ1 > λ2 > · · · > λk > 0 and generalized incomplete hypergeometric functions

pγq(Z) and pΓq(Z) are symmetric functions in the sense that pγq(Z) = pγq(lZl
′)

and pΓq(Z) = pΓq(lZl
′), ll′ = I for all orthogonal matrices. In this case, we

have f(ZΛ) = f(ΛZ) = f(Λ1/2ZΛ1/2) whenever Λ1/2 is defined.
For the positive semi definite matrix Z there exists a lower triangular matrix
T such that Z = TT ′. Now transforming Z to T by using (25) as dZ =[
2k
∏k
i=1 t

k+1−i
ii

]
dT and |TT ′| =

∏k
i=1 t

2
ii. After substituting these values in

the left-hand of (35) and (36), use (34) and after a bit of simplification, we get
the desired result.

Theorem 4: The incomplete H-functions with matrix argument also hold the
decomposition formula as follows:∫

Z>0

|Z|s−
k+1
2 γM,N

P,Q

[
Z

∣∣∣∣ (f1,F1, A), (fj ,Fj)2,P

(wj ,Wj)1,Q

]
dZ+∫

Z>0

|Z|s−
k+1
2 ΓM,N

P,Q

[
Z

∣∣∣∣ (f1,F1, A), (fj ,Fj)2,P

(wj ,Wj)1,Q

]
dZ

=

∫
Z>0

|Z|s−
k+1
2 HM,N

P,Q

[
Z

∣∣∣∣ (fj ,Fj)1,P

(wj ,Wj)1,Q

]
dZ. (41)
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Proof: We can write left hand side of (41) as

γk(k+1
2 − f1 − F1s,A)

∏M
j=1 Γk(wj + Wjs)

∏N
j=2 Γk(k+1

2 − fj − Fjs)∏Q
j=M+1 Γk(k+1

2 −wj −Wjs)
∏P
j=N+1 Γk(fj + Fjs)

+

Γk(k+1
2 − f1 − F1s,A)

∏M
j=1 Γk(wj + Wjs)

∏N
j=2 Γk(k+1

2 − fj − Fjs)∏Q
j=M+1 Γk(k+1

2 −wj −Wjs)
∏P
j=N+1 Γk(fj + Fjs)

=

∏M
j=1 Γk(wj + Wjs)

∏N
j=1 Γk(k+1

2 − fj − Fjs)∏Q
j=M+1 Γk(k+1

2 −wj −Wjs)
∏P
j=N+1 Γk(fj + Fjs)

. (42)

The right-hand side of (42) is the same as derived by Mathai (eq. 3.1, [7]).

Corollary 1: Let Z be a k × k real symmetric positive definite matrix. Then
by using the definition of incomplete H-function ΓM,N

P,Q (Z). We have

|Z|ωΓM,N
P,Q

[
Z

∣∣∣∣ (f1,F1, A), (fj ,Fj)2,P

(wj ,Wj)1,Q

]
= ΓM,N

P,Q

[
Z

∣∣∣∣ (f1 + ωF1,F1, A), (fj + ωFj ,Fj)2,P

(wj + ωWj ,Wj)1,Q

]
. (43)

Proof: By using a similar matrix argument, we can obtain property (43) if we
substitute s+ ω = s; (ω > 0) and ds = ds. This will give us the desired result.

Corollary 2: Let Z be a k×k real symmetric positive definite matrix. Then by
using the definition of incomplete H-function ΓM,N

P,Q (Z). We have the following
result

ΓM,N
P,Q

[
Z−1

∣∣∣∣ (f1,F1, A), (fj ,Fj)2,P

(wj ,Wj)1,Q

]
= ΓN,MQ,P

[
Z

∣∣∣∣ (k+1
2 −wj ,Wj)1,Q

(k+1
2 − f1,F1, A), (k+1

2 − fj ,Fj)2,P

]
. (44)

Proof: This result is obtained by using equation (40), and applying the trans-
formation L = Z−1 while noting that dZ = |L|−(k+1)dL.

Theorem 5: Let Z be a k × k real symmetric positive definite matrix with
eigenvalues λ1 > λ2 > · · · > λk > 0 and the incomplete H-functions γM,N

P,Q (z)

and Γ
M,N

P,Q (z) be a symmetric functions in the sense γM,N
P,Q (Z) = γM,N

P,Q (lZl′) and

Γ
M,N

P,Q (Z) = Γ
M,N

P,Q (lZl′), ll′ = I for all orthogonal matrices. If s is an arbitrary
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parameter then consider the integral equations:∫
Z>0

|Z|s−
k+1
2 γM,N

P,Q

[
Z

∣∣∣∣ (f1,F1;β1 : A), (fj ,Fj ;βj)2,N , (fj ,Fj)N+1,P

(wj ,Wj)1,M , (wj ,Wj ;αj)M+1,Q

]
dZ

=
[γk(k+1

2 − f1 − F1s,A)]β1
∏M
j=1 Γk(wj + Wjs)

∏N
j=2[Γk(k+1

2 − fj − Fjs)]
βj∏Q

j=M+1[Γk(k+1
2 −wj −Wjs)]αj

∏P
j=N+1 Γk(fj + Fjs)

,

(45)

and∫
Z>0

|Z|s−
k+1
2 Γ

M,N

P,Q

[
Z

∣∣∣∣ (f1,F1;β1 : A), (fj ,Fj ;βj)2,N , (fj ,Fj)N+1,P

(wj ,Wj)1,M , (wj ,Wj ;αj)M+1,Q

]
dZ

=
[Γk(k+1

2 − f1 − F1s,A)]β1
∏M
j=1 Γk(wj + Wjs)

∏N
j=2[Γk(k+1

2 − fj − Fjs)]
βj∏Q

j=M+1[Γk(k+1
2 −wj −Wjs)]αj

∏P
j=N+1 Γk(fj + Fjs)

.

(46)

Proof: We can prove this Theorem by follow same steps as in Theorem 1.

Theorem 6: Let Z be a k×k real symmetric positive definite matrix with eigen-
values λ1 > λ2 > · · · > λk > 0 and the incomplete I-functions (γ)IM,N

Pi.Qi,R
(z)

and (Γ)IM,N
Pi.Qi,R

(z) be a symmetric functions (γ)IM,N
Pi.Qi,R

(z) = (γ)IM,N
Pi.Qi,R

(z)(lZl′)

and (Γ)IM,N
Pi.Qi,R

(z) = (Γ)IM,N
Pi.Qi,R

(z)(lZl′), ll′ = I for all orthogonal matrices. If
s is an arbitrary parameter then consider the integral equations:∫

Z>0

|Z|s−
k+1
2 (γ)IM,N

Pi.Qi,R

[
z

∣∣∣∣ (f1,F1, A), (fj ,Fj)2,N , (fji,Fji)N+1,Pi

(wj ,Wj)1,M , (wji,Wji)M+1,Qi

]
=
γk(k+1

2 − f1 − F1s,A)
∏M
j=1 Γk(wj + Wjs)

∏N
j=2 Γk(k+1

2 − fj − Fjs)∑R
i=1

[∏Qi

j=M+1 Γk(k+1
2 −wji −Wjis)

∏Pi

j=N+1 Γk(fji + Fjis)
] , (47)

and∫
Z>0

|Z|s−
k+1
2 (Γ)IM,N

Pi.Qi,R

[
z

∣∣∣∣ (f1,F1, A), (fj ,Fj)2,N , (fji,Fji)N+1,Pi

(wj ,Wj)1,M , (wji,Wji)M+1,Qi

]
=

Γk(k+1
2 − f1 − F1s,A)

∏M
j=1 Γk(wj + Wjs)

∏N
j=2 Γk(k+1

2 − fj − Fjs)∑R
i=1

[∏Qi

j=M+1 Γk(k+1
2 −wji −Wjis)

∏Pi

j=N+1 Γk(fji + Fjis)
] . (48)

Proof: We can prove this Theorem by follow same steps as in Theorem 1.

We can formulate two additional theorems for the decomposition formula of
the incomplete H-functions and the incomplete I-functions, similar to what we
did in Theorems 2 and 4.
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4 Particular Cases

This section delves into the analysis of specific cases that arise from our main
findings. When considering a matrix argument Z (which is a real symmetric
positive definite matrix of size k × k), we can identify the following particular
cases:

1. When Fj = Wj = 1, it is possible to demonstrate that the M-transform
of incomplete H-functions, which have a matrix argument defined in (40),
satisfy the M-transform of incomplete Meijer (Γ)G-function (see [25]) with
a matrix argument given by:∫

Z>0

|Z|s−
k+1
2 ΓM,N

P,Q

[
Z

∣∣∣∣ (f1, 1, A), (fj , 1)2,P

(wj , 1)1,Q

]
dZ

=

∫
Z>0

|Z|s−
k+1
2 (Γ)GM,N

P,Q

[
Z

∣∣∣∣ (f1, A), (fj)2,P

(wj)1,Q

]
dz

=
Γk(1− f1 − s,A)

∏M
j=1 Γk(wj + s)

∏N
j=2 Γk(1− fj − s)∏Q

j=M+1 Γk(1−wj − s)
∏P
j=N+1 Γk(fj + s)

. (49)

2. When M = 1, N = P , and we replace Q with Q+1, we can obtain incom-
plete H-functions with matrix arguments (39) and (40) by appropriately
choosing parameters. Specifically, we can set Z = −Z and fj → (1−fj) for
j = 1, . . . , P , and wj → (1−wj) for j = 1, . . . , Q. With these choices, the
incomplete H-functions can be transformed into incomplete Fox-Wright
functions with matrix arguments PψQ

(γ)(Z) and PψQ
(Γ)(Z), as follows:∫

Z>0

|Z|s−
k+1
2 γ1,P

P,Q+1

[
−Z

∣∣∣∣ (1− f1,F1, A), (1− fj ,Fj)2,P

(0, 1), (1−wj ,Wj)1,Q

]
dZ

=

∫
Z>0

|Z|s−
k+1
2 PψQ

(γ)

[
Z

∣∣∣∣ (f1,F1, A), (fj ,Fj)2,P

(wj ,Wj)1,Q

]
dZ

=

∏Q
j=1 Γk(wj)∏P
j=1 Γk(fj)

×
γk(f1 − s,A)

∏P
j=2 Γk(fj − s)∏Q

j=1 Γk(wj − s)
Γk(s), (50)

and∫
Z>0

|Z|s−
k+1
2 Γ1,P

P,Q+1

[
−Z

∣∣∣∣ (1− f1,F1, A), (1− fj ,Fj)2,P

(0, 1), (1−wj ,Wj)1,Q

]
dZ

=

∫
Z>0

|Z|s−
k+1
2 PψQ

(Γ)

[
Z

∣∣∣∣ (f1,F1, A), (fj ,Fj)2,P

(wj ,Wj)1,Q

]
dZ

=

∏Q
j=1 Γk(wj)∏P
j=1 Γk(fj)

×
Γk(f1 − s,A)

∏P
j=2 Γk(fj − s)∏Q

j=1 Γk(wj − s)
Γk(s). (51)

In this context, the M-transform of incomplete Fox-Wright functions with
matrix argument (50) and (51) represent particular cases of the M-transform
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of generalized incomplete hypergeometric functions (35) and (36), respec-
tively (see [15]).

3. When A = 0, it is possible to demonstrate that the M-transform of in-
complete H-functions with matrix argument defined in (40) satisfies the
M-transform of H-functions with matrix argument given in (6).

4. When A = 0 and Fj = Wj = 1, it is possible to demonstrate that the
M-transform of incomplete H-functions with matrix argument defined in
(40) satisfies the M-transform of G-functions with matrix argument given
in [5].

5. When A = 0, it is possible to demonstrate that the M-transform of gener-
alized incomplete hypergeometric functions with matrix argument defined
in (36) satisfies the M-transform of hypergeometric functions with matrix
argument given in (5).

5 Conclusions

This study aims to establish the definition of special functions with a matrix
argument of a symmetric matrix of size k×k, which involves k(k+1)/2 variables.
To achieve this, we utilized a generalized matrix transform technique to derive
the definition of the special function of the matrix argument. Using Jacobians
of transformations and substituting specific values into the derived definition,
we can obtain various outcomes based on our findings.
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