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Foundation of Stochastic Fractional Calcu

Let t € [a, 0] CR, w € Q, where (2, F, P) 15 a probability space. Here X (t,w)
stands for a stochastic process. Case of X (-,w) being continucus on [a, b], ¥
w € 0. Then by Caratheodory Theorem 20.15, p.156, [1], we get that X (t, w)
15 jointly measurable.

Next we define the left and right respectively, Riemann-Liouville stochastic
fractional integrals, where a > 0 1s not an integer:

I8, X (z.w) = ﬁ[ (z—1)*" X (t.w)dt. (1)
and , , 1
I X (z,w) = ml (t—x)"7 X (t,w)dt, (2)

v x € la, b, Vwe D, where T 15 the gamma function.
In the following important cases we prove that I, X I} X are stochastic
processes:

1) Assume that (22, F, P) 1z a complete probability space, and that (z — t}a_l X (¢, w)

15 an integrable function on [a,z] x Q, ¥ = € [a,b], then by Fubini’s theorem,
[12], p. 269, IZ, X (x,-) is an integrable function on @, ¥ x € [a,b]. Similarly, if
(t— x}ﬂ_i X (t,w) 15 an integrable function on [z, 0] x @, ¥V x £ [a, b], then again
by Fubini’s theorem I X (z.-) is an integrable function on 2, ¥ z € [a, b] . That
18 I& X (z,w) and I7 X (x,w) are stochastic processes.



11} Assume a general probability space (2, F, P) and the Lebesgue measure
spaces on [a, x|, [z,b], ¥ = € [a,b]. These are clearly o-finite measure spaces. We
assume that the jointly measurable stochastic process X (t.w) = 0 on [a, b] x O,
hence (z —)* ™" X (t,w) = Oon[a, 2] xQ, and (t — )" X (t,w) = 0 on [z, b] x
Q¥ z € [a.b], and both are jointly measurable. Then by Tonelli’s theorem,
[1?] p. 270, we get that I?, X (z,-), I} X (z.-) are measurable functions on
0,7z € [a.b]. That 1s I2. X, I X are stochastic proceszes. The above facts

provide the foundation of stochastic fractional calculus in the direct analytical
sense. So 1t 15 not unusual to consider that I7, X, [i* X are stochastic processes.

1) Given that X (-,w) 13 in Ly ([a, b]) then I?, X (-, w) € L1 ([a,b]). Y w € O,
see [10], p. 13, and I} X (-, w) € Ly ([a.b]). ¥ w € 2, zee [3], p. 334.

And given that X (-,w) € L ([a,b]), then I;*_I_XI[ w) € C{[a,b]), when
0 <a <1, and I7 X (-,w) € AC([a,b]) (absolutely continuous functions),
when a > 1, YV w € Q, see [6], p. 388. Similarly, if X (-, w) € Ly ([a,b]), then
I X(,w) € Clla,b]), when 0 < a < 1, and I}* X (-,w) € AC([a,b]), when
azl, Ywe, see 9.




Definition 1 Let non-integer a > 0, n = [a] ([-] is the ceiling of the number),
t € labl CR, weQ where (U F P) is a general probability space. Here
X (t,w) stands for a stochastic process. Assume that X (-,w) € AC™([a,b])
(spaces of functions X (-,w) with X(™=1 (. w) € AC([a,d])), ¥ w € Q.

We call stechastic left Capute fractional derivative

D% X (z,w) = r; f ’ (z — )" """ X (¢, w) dt, (3)

(n —a)

Wax&lab,Vwel
And, we call stochastic right Caputo fractional derivative

_1y" b
DX (x,w) = % f (z—2)" 7 XM (2,w) dz,

Vxé&la b, Vwel



Commutative Caputo fractional Kor
Inequalities for Stochastic process

1 Introduction

Our work 12 motivated by the following:
Korovkin’s Theorem ([12], 1960) Let {Tj)jEN be a sequence of posi-

tive linear operators from C([a, b]) into itself, [a. 8] C . In order to have
lim (T;f)(t) = f(f) (in the sup-norm) for all f € C ([a,d]), it is enough to
j—oo

prove it for fo(t) = 1, f1(t) =t and f5 (f) = t?. The rate of the above con-
vergence for abitrary f € C'([a, b]) can be determined exactly from the rates of
convergence for [y, f1. fa.

Shisha-Mond inequality ([14]) We have

1T (F) = Al = 71175 (1) = 1 +wr (f,05) - L+ (T3 (1))

)

where

o= (|75 (-v*) @)




In the last inequality ||-|| stands for the supremum norm and w; for the first
modulus of continmity. This inequality gives the rate of convergence of T; to the
unit operator I.

Annastassiou in [2|-[4] established a series of sharp inequalities for various
cases of the parameters of the problem. However, Weba in [15]-[18] was the first,
among many workers 1n quantitative results of Shisha-Mond type, to produce
inequalities for stochastic processes. He assumed that T; are E-commutative
(E means expectation) and stochastically simple. According to his work, if a
stochastic process X (f,w), t € () - a compact convex subset of a real normed
vector space, W € () - probability space, 15 to be approximated by positive linear
operators T, then the maximal error in the gth mean is (¢ > 1)

q)%_

TX-X| = sup (E(T;X) (t,w) = X (t,w)

So, Weba established upper bounds for || T;.X — X| involving his own natural
general first modulus of continmty of X with several interesting applications.
Anastassiou met ([5]) the pointwise case of ¢ = 1. Without stochastic sim-

plicity of T he found nearly best and best upper bounds for | E (T;X) (x) — (EX) (x0)|,
Tp £ Q.




The author here continues his above work on the approximation of stochastic
processes, now at the Caputo stochastic fractional level. He derives pointwise
and unmform Caputo fractional stochastic Shisha-Mond type nequalities, see
tha main Theorems 4. 7 and the several related corollaries. He gives an exten-
sive application to stochastic Bernatein operators. He finishes with a pointwise
and a uniform fractional stochastic Korovkin theorem, derived by Theorems 4,
7. The stochastic convergences, about stochastic processes, of our fractional
Korovkin Theorems 15, 16 are enforced only by the convergences of real basic
non-stochastic functions.



2 Background

Definition 1 ([/10/) Let non-integer oo > 0. n = [a] (]-]| is the ceiling of the
number), t € [a 0] C R, w € Q, where (Q, F, P) is a general probability space.
Here X (t,w) stands for a stochastic process. Assume that X (-,w) € AC™ ([a, b])
(spaces of functions X (-.w) with X"~V (. w) € AC ([a.b]) absolutely continu-
ous functions), v w € Q.

We call stochastic left Caputo fractional derivative

1 * a—
DX (z,w) = m/ (@ —t)" 7 x™ (¢ w)at,

vxelad,vwe
And. we call stochastic right Caputo fractional derivative

DEX (2,0) = = (=1)° / (2 — )1 X (2 ) dz. ()

T(n—a)

Vo ela b, VweQ AboveT stands for the gamma function.



‘X(“J (t?w)‘ <M, ¥ (tw)€[a,d] x Q,
where M = 0.

It is not strange to assume that D, X D" X are stochastic processes.
\
M(@—t)" _ M@O-t)""

DX (2, L"')|£1“(n—aﬁ+1)—1“(—n.—¢:n;+1)’ ()

Yaoxeltd,anyt €la b, VweQ,

and

M(t—=z)"" - M(t—a)""
Tn—a+1) " T(n—a+1)
Yareclat], anyt €la, b, ¥ we

|D§"_X (z,w)

<

(6)

Hence, 1t holds (4 > 0)

9M (b—a)"™®
n(E(DEX) .0
t:}:fb]ul( (P2, O = Fn—a+1)
Similarly, it holds (§ > 0)
I (b—a)"

sup wi (E (Df_X) ]5)

: 11
-{_-E[ﬂ]b] [ujt] n F (n —a + 1) ( )




|z — 1

E(D%X) (2) — E(D%X) ()] < w1 (B (DSX) 61)pe4 [T

a1 (B(D5X). 0 (1+552)).

vz eltb],

and similarly (2 > 0),
t
|E (DF_X) (2) — E(DELX) (t)| < w1 (E(DEX) ,82), 4 (1 +——

vV z€la,t].
We also set
w1 (E(DPX),6) = max {w1 (E (D%X).8),, 4 -w1 (E (DE_X) .3) [a,q} (14

where 0 > 0.

d



Remark 3 Let the positive linear operator L mapping C ([a,d]) into B ([a,d])
(the bounded functions). By the Riesz representation theorem ([13]) we have
that there exists p, unique, completed Borel measure on [a,b] with

pg ([a,0]) = L(1) (t) > 0, (15)
such that

L(f)(f)=£b]f(3)d#t(ﬁ)? viclad, v feC(ad).  (16)

The last means

L(=0f) o <z (ls—tF) @ < (£(ls- o) (t))(“i‘) ) ) =)
allk =1, .n—1 Itis clear that (18)
|z (ls-a=) o <o

o0, [a,b]

Furthermore we derive
£ (=) Oy < NE(e =) O, <

2 (s =) 0] S e an G (19)
allk=1....n—1.

From now on we will denote ”Hm o] = ||||-:a the supremum norm.
? ¥



3 Preliminaries

Let (©2, F, P) be a probabilistic space and L! (Q2, F. P) be the space of all real-

valued random variables Y = Y} (:.u) with

L|Y(w)|P(dw) < oo

Let X = X (t,w) denote a stochastic process with index set [a, 8] C Il and
real state space ([1 3), where I3 1s the o-field of Borel subsets of L. Here
C' ([a,d]) 15 the space of continuous real-valued functions on [a,b] and B ([, b])
is the space of bounded real-valued functions on [a,b]. Also Cq ([a,b]) =
C ([ajb] L1 (Q,F ?P)) is the space of L!-continuous stochastic processes in t

and Bq ([a, b]) = {X . sup fn | X (t,w)| P (dw) < DC} . obviously Cq ([a, b]) C

t[a,b]
Ba ([a.]).

Leta > 0,a €, [a] = n, and consider the subspace of stochastic processes
Ca" ([a,0]) = {X : X (w) € AC™([a,d]), ¥ w € Q and |X™ (t,w)| < M, ¥
(t.w) € [a,b] x Q, where M > 0; X¥) (t.w) € Cq([a,b]), e =01,...n—1;
also D3, X, D2 X are stochastic processes for any t € [a, b|}. That 1s, for every
w € Q we have X (f,w) £ cn-l ([a, 0])-

Consider the linear operator
L Ca ([a,b)) = Ba ([a.8]).

If X € Cn(]a, b]) 1s nonnegative and LY too, then L is called positive. If
EL =LE then L 1s called E-commutative.




4 Main Results

Theorem 4 Consider the positive E-commutative linear operator L - Cq ([, b]) —
Bq ([a.0]). and a > 0. a € N, [a] =n, and let X € C5™" ([a.d]), with 6 > 0.
Then

I(E(LX)) (t) = (EX) (&) = [(EX) (O] [(L (1)) () — 1]+ (20)

SISO (o) o] 2 O

) o _ ¢|ot] EE=
(L(ls=t") @)™ (L{mmﬁu(L(' 51 +3](ﬂ) ;.

v te[ab].
Above wq (E(DgX) ,6) 1s as in (14).



From [17, pp. 3-5] we have the following results
(i) € ([a.8]) C Cn ([a5]).
(i) if X € Co ([a,b]), then EX € C ([a,8)),
and
(111) if L 18 E-commutative, then L maps the subspace C ([a, 8]) into B ([a, 8]) .

\

Definition 5 If 0 < a < 1, thenn = 1, and CS" ([a.0]) = {X : X (-.w) €
AC([a.0]), ¥ w € Q and | XD (t,w)| < M, ¥ (t.w) € [a,b] x Q, where M > 0;
X (t,w) € Caql([a,b]); also DXX, D X are stochastic processes for any t €

[a, 0]}

\
Corollary 6 Consider the positive E-commutative linear operator L - Cq ([a, b]) —
Bo ([a,8]), and 0 < a < 1 and let X € CS' ([a,b]), with & > 0.
Then

(E(LX)) (@) - (EX) @) = [(EX) (@] I(L (1) (@) =1+

w1 (E(DgX),6) (L (|3 B tlﬂﬂ) (t))ﬁ

T'(a+1)
(L(ls=t"") @)™
d(a+1)

(=

(L(1) ()™ +

¥tela b



Theorem 7 All as in Theorem 4. Then

|E(LX) = EX| < [EX| o |IL(1) = 1| +

S IEY e |2 (-0 0]+ oup SLEREN).5)

o  telay Tl(a+1)

(s o
o d(a+1)

f==

< oo, (43)

Corollary 8 All as in Corollary 6. Then

|E(LX) — EX|| < [[EX|oo [ L(1) =1/ +

e () 0

_ _
a1

|z (le - 0] 2

dla+1)

1
IZ(M|IZT +




Corollary 9 All as in Corollary 6, and L (1) =1. Then

|E(LY)— EX|_ < sup SLEDEX).0)
tefap L (a+1)

2 (e —er) 0]
d(a+1)

JR
a1

| (1) @] 2

1+

Corollary 10 All as in Corollary 6, and L (1) =1. Then
1
|n+1 )

(46)

/

o a+1
2 sup wq (E(D1t X)?E#I}”L (|3_t| + )(t}

t<[a, b

|E(LX) - X, < NCESY

CEy

|z (le-e=) @02




5 Application

Let f € C(]0,1]) and the Bernstein polynomials

me(n® =35 (&) (V) a0 ()

7te]0.1], v NIl
We have that 551 =1 and Bx 15 a positive inear operator.
We have that

By ((-07) (=02 e, (45)
and
HBN ((-_t)ﬂ) () ; <57 YNEN (49)

Define the corresponding stochastic application ot 5y by

B (0)(¢) = Bw (Y ()0 =3 % (50) (V) -0+ o)

N
k=0

Tt [0 1], VweQ N &l where X 1s a stochastic process. Clearly By (X)
15 a stochastic process and By : Cq ([0, 1]) — Cq ([0, 1]). Notice that

EBxy (X)) =3 ) (£) () #0-0"" = By EX) 0. (1

.-'\.T
=0 -

vte[0,1].
That1s EBy = By E,1.e. By an E-commutative positive linear operator.




Proposition 11 Let 0 < a < 1 and X € €3 ([0,1]). Then

2supm1(E pex). —_||B (s—t“‘“)
T(a+1)

|E(BnX) - EX||, =

]
o1

[ (1e - ) ]

1
Corollary 12 Let X € C2" ([0.1]). Then

)

(53)

|E(BxX) — EX|_ -::T sup wi (E (Dt ) ”BN (|S—t| )(t}

Ttelo,1]

1
HBN (|3 _tﬁ) (t)”3 , YNcN.

oo



Remark 13 We notice that

By (|s =17 () = S

k=0

3
¢ kIP(N
N ke

(by discrete Hélder’s inequality)

(48) (;—Tt(l—t))E < (4;)%? vte[o
That is 3
fow (o-%) 0] = L
and .
B~ (le =) O < 73
and 2
”BN (|3—t|?)(t) T < Wik

¥ N c N




1
Proposition 14 Let X € C2" ([0.1]). Then

v’ Ly
|E(ByX) — EX]||_ < sup wr (E (Dfx) ? ) o (58)
-./?_T{fr‘ Niego,1] t 3VN
v N € [N
Hence lim E (ByX) = EX, uniformly.

N—mc




6 Caputo Fractional Stochastic Korovkin theory

Here L 13 meant as a sequence of positive E-commutative linear operators and
all assumptions are as in Theorem 4.

Theorem 15 We further assume that L (1)(t) — 1 and L (lS — t[=t
then (E (LX)) (t) — (EX)(t), forany X € C5" ([2,d]), ¥ t € [a,b], a pointwise
convergence; where a >0, a 2 N, [a] =n.
\
Theorem 16 We further assume that L (1) (t) — 1, uniformly and
HL (|S - t|a+1) (t]H — 0, then E (LX) — EX, uniformly over |a,b], for any
X 22 ([a.8]); where a > 0. a € M. [a] =n.

Remark 17 The stochastic convergences of Theorems 15, 16 are derived by the

7

convergences of the basic and simple real non-stochastic functions {1, 5 — t|ﬂ"+1 }
an amazing fact!
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